
High-Order Continuous Geometrical Validity

FEDERICO SICHETTI, University of Genoa, Italy

ZIZHOU HUANG, New York University, United States

MARCO ATTENE, CNR-IMATI: Genova, Italy

DENIS ZORIN, New York University, United States

ENRICO PUPPO, University of Genoa, Italy

DANIELE PANOZZO, New York University, United States

0

1

S
ca

le
d

 J
a
co

b
ia

n

Fig. 1. So� body simulations [Ferguson et al. 2023] of twisting a beam in 3D (le�) and twisting the inner circle of a fat ring in 2D (right), without (top) and with
(bottom) our continuous validity check. The high-order invalid elements are marked in red, and the scaled Jacobian distribution is shown on the right. Without
our method, the Twist-beam example has 1 and 161 invalid elements at t=3 s and t=7 s respectively; the Twist-ring example has 11 and 31 invalid elements at
t=0.4 s and t=1 s respectively. With our validity check and adaptive quadrature refinement scheme, the simulations do not contain any invalid elements.

We propose a conservative algorithm to test the geometrical validity of
simplicial (triangles, tetrahedra), tensor product (quadrilaterals, hexahedra),
and mixed (prisms) elements of arbitrary polynomial order as they deform
linearly within a time interval.

Our algorithm uses a combination of adaptive Bézier re�nement and
bisection search to determine if, when, and where the Jacobian determinant
of an element’s polynomial geometric map becomes negative in the transi-
tion from one con�guration to another. In elastodynamic simulation, our
algorithm guarantees that the system remains physically valid during the
entire trajectory, not only at discrete time steps. Unlike previous approaches,
physical validity is preserved even when our method is implemented using
�oating point arithmetic. Hence, our algorithm is only slightly slower than
existing non-conservative methods while providing guarantees and while
being an easy drop-in replacement for current validity tests.

To prove the practical e�ectiveness of our algorithm, we demonstrate
its use in a high-order Incremental Potential Contact (IPC) elastodynamic

Authors’ addresses: Federico Sichetti, University of Genoa, Italy, federico.sichetti@edu.
unige.it; Zizhou Huang, New York University, United States, zizhou@nyu.edu; Marco
Attene, CNR-IMATI: Genova, Italy, marco.attene@ge.imati.cnr.it; Denis Zorin, New
York University, United States, dzorin@cs.nyu.edu; Enrico Puppo, University of Genoa,
Italy, enrico.puppo@unige.it; Daniele Panozzo, New York University, United States,
panozzo@nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2025 Association for Computing Machinery.
0730-0301/2025/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

simulator and experimentally show that it prevents invalid, simulation-
breaking con�gurations that would otherwise occur using non-conservative
methods.

ACM Reference Format:

Federico Sichetti, Zizhou Huang, Marco Attene, Denis Zorin, Enrico Puppo,
and Daniele Panozzo. 2025. High-Order Continuous Geometrical Valid-
ity. ACM Trans. Graph. 1, 1 (May 2025), 19 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

In computer graphics, mechanical engineering, and scienti�c com-
puting, physical objects are often modeled using meshes composed
of simple elements, such as tetrahedra, hexahedra, and prisms. Each
element is typically associated with two maps: (1) a geometric map
that de�nes the element’s shape; and (2) a basis map that extends
quantities (such as displacement or velocities) de�ned at the ele-
ment’s nodes into its interior. For rendering, linear polynomials
(hat functions) are commonly used for both maps, but higher-order
versions are widely employed when greater accuracy is required.
When the basis map is used to interpolate a displacement, the el-
ement’s geometry is derived by combining the initial geometric
map with the basis map, yielding a polynomial whose order corre-
sponds to the highest of the two. A typical example in graphics is the
use of second-order elements in �nite element (FE) simulations for
fabrication [Panetta et al. 2015], which generates quadratic curved
elements even if the initial geometric map is piecewise linear.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

HTTPS://ORCID.ORG/0000-0003-2805-306X
HTTPS://ORCID.ORG/0009-0007-6529-4694
HTTPS://ORCID.ORG/0000-0002-9012-7245
HTTPS://ORCID.ORG/0000-0001-7733-5501
HTTPS://ORCID.ORG/0000-0001-9780-5283
HTTPS://ORCID.ORG/0000-0003-1183-2454
https://orcid.org/0000-0003-2805-306X
https://orcid.org/0009-0007-6529-4694
https://orcid.org/0000-0002-9012-7245
https://orcid.org/0000-0002-9012-7245
https://orcid.org/0000-0001-7733-5501
https://orcid.org/0000-0001-9780-5283
https://orcid.org/0000-0003-1183-2454
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Federico Sichetti, Zizhou Huang, Marco Attene, Denis Zorin, Enrico Puppo, and Daniele Panozzo

In the following, we will overload the term geometry map to
describe the �nal geometry of an object, which can thus also incor-
porate the displacement basis map. In mathematical notation, this
is de�ned with a polynomial function:

G : f −→ R=,

where f represents a reference element domain (such as a stan-
dard simplex or multi-interval), and = denotes the dimension of the
element. See Figure 2 for examples.

During animation or simulation, objects are deformed by modify-
ing the geometry map, the basis map, or both: these modi�cations
are usually performed by applying linear transformations to the
map coe�cients. Note that, for a piecewise linear geometric map,
this reduces to the usual interpolation of the coordinates of the
mesh vertices. Similarly, for curved meshing, it is also typical to
start with a piecewise linear mesh and then curve its elements to
reduce the approximation error [Toulorge et al. 2013].

Since these meshes are used to represent physical objects, a basic,
yet elusive, requirement is that the geometry of the object does not
self-intersect at any time during deformation. This condition can
be violated in two ways: (1) by a global intersection or (2) by a local
lack of injectivity of the geometric map. The �rst problem has been
studied thoroughly in the parametrization and simulation literature,
at least for linear elements [Smith and Schaefer 2015; Wang et al.
2021a]. The second condition has been considered mostly in the
context of mesh parametrization, and, even in that case, no robust
algorithm exists (see Section 3). In this work, we focus on the latter.

Problem statement. We denote with Ḡ a geometric map that is
dynamically changing over time and we study its injectivity. This
reduces to studying the sign of the determinant of its Jacobian |�Ḡ |
to assess the continuous validity of the element, i.e., if, where and
when |�Ḡ | becomes negative.We note that this is a subtly challenging
problem even for the simple case of a linear triangle (Figure 3): an
element that is valid in its initial and �nal con�gurations might
become invalid during the trajectory.

Conservative answer. An indispensable requirement for the ro-
bustness of simulations is that they employ conservative algorithms:
that is, a program that only reports results whose correctness cannot
be in�uenced by approximation errors. Thus, a Boolean predicate
(such as asking whether an element is valid or not) is required to
return a third "undecided" value if the approximation error is large
enough to make the naive result unreliable. Conversely, if the algo-
rithm returns an answer, that answer must be provably correct. In
the context of continuous validity, we wish to �nd the maximum
time step C∗ such that the element is provably valid at all times in
[0, C∗): a conservative answer can be any value C ∈ [0, C∗). Obviously,
in practice, it is also desirable that C be as close to C∗ as possible.

Brief summary of the state of the art. A common approach among
practitioners is testing the validity of elements by just computing
the value of |�G | at quadrature points at every time step, as done,
e.g., by Dey et al. [2001]. This might fail to detect invalidity even
in static tests, let alone the continuous case. Smith and Schaefer
[2015] study the continuous problem for the speci�c case of 2D
linear triangles, reducing it to a quadratic root �nding, which is

solved numerically; this approach is hard to extend to 3D or to
higher-order polynomials. Other approaches exist to resolve the
static test for high-order elements [Johnen et al. 2014], but they are
neither conservative nor easily extensible to the continuous test.
More detail on the state of the art is provided in Section 3.

Contribution. We introduce the �rst generic formulation and al-
gorithm for the continuous validity test of elements, supporting
the most common types — such as triangles, quadrilaterals, tetra-
hedra, prisms, and hexahedra — and extending to high-order basis
and geometric maps. Our algorithm is provably conservative when
implemented using �oating-point arithmetic, meaning that if an
element is detected to be valid, it is guaranteed to remain valid
throughout the entire speci�ed time interval. This level of robust-
ness, crucial for algorithmic reliability, has not been achieved by
any previous method.
If an element becomes invalid at any point, our algorithm pro-

vides a conservative estimate of the inversion time and introduces
a custom quadrature rule that accurately re�ects the detected inver-
sion. Speci�cally, this means that the numerical integration diverges
when the element inverts, a property not provided by adaptive quad-
rature rules commonly used in high-order �nite elements.
While designed for the dynamic case, our algorithm can also be

used for the static case, with minor modi�cations: in this setting,
our algorithm is the �rst algorithm to provide a conservative static
geometrical validity test for high-order elements.

Evaluation. Our algorithm is designed and implemented for high
performance, as its use-case is within optimization loops requir-
ing the testing of large datasets: on static checks, we demonstrate
that our test is competitive in terms of runtime with current non-
conservative methods, being slightly slower while guaranteeing a
conservative answer. To quantitatively evaluate the correctness and
e�ciency of our approach and compare it with more specialized
alternatives, we construct a dataset of 2D and 3D time-dependent
queries whose ground truth is computed using (extremely expen-
sive) symbolic root �nding.

Applications. Having access to a conservative check we discov-
ered that it is very common for high-order FE simulations to contain
invalid elements in their solution; we show examples in PolyFEM
in Figures 1 and 12. This seems to be a common problem with high-
order FE codes: for example, FEBio [Maas et al. 2012] also uses a
static check only at quadrature points. This issue is rarely mentioned
in the literature [Anderson et al. 2014; Dobrev et al. 2019] and we
are not aware of other papers proposing a solution. We believe that
the presence of invalidity is due to the use of insu�ciently accurate
quadrature to capture the in�nite elastic potential inside some of
the most distorted elements. This is a major source of both the nu-
merical fragility of this software and inaccuracy in the solution as
physically invalid con�gurations are reported as the simulation re-
sult. By replacing the validity check and the quadrature in PolyFEM
with our approach, we show that these issues disappear and the
impact on performance is moderate.

Impact. We believe our algorithm will be an essential addition to
the growing toolkit of robust geometric building blocks used in mod-
ern parametrization, meshing, and simulation algorithms. To foster

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

High-Order Continuous Geometrical Validity • 3

Fig. 2. A reference domain f is mapped to linear elements (Le�) and quadratic elements (Right). Quadratic elements can be given either by an initial quadratic
geometry or by combining an initial linear geometry with a quadratic displacement. Geometric maps on a Lagrangian basis are specified by mapping the
domain points %8 to control points G 9 (%8) . Blue and red areas denote a positive and negative determinant of the Jacobian, respectively. In both cases, element
G2 (f) is invalid. In the linear case, the whole element is inverted, while in the quadratic case, only a small portion of G2 (f) is inverted.

�

�

�

C = 0.0

� �

�

C = 0.2

�

�
�

C = 0.4

�

�

�

C = 0.6
�

�

�

C = 0.8
�

�

�

C = 1.0

Fig. 3. A dynamic linear element with linear trajectories that flips twice
in a time interval, resulting in an element that is valid at both time steps,
but invalid in the transition. Assuming point � remains fixed, the arrows
represent the velocities of points � and� to reach the final position. The
color of each element indicates the sign of the determinant at time C : blue
if positive and red if negative. The dynamic element’s Jacobian determinant
is a univariate polynomial in C of degree 2, with two distinct roots in [0, 1].

its adoption, we provide an open-source reference implementation
at https://gitlab.com/fsichetti/hocgv.

2 OVERVIEW OF THE METHOD

Given a dynamic element Ḡ (f) deforming linearly over the time
interval [0, 1], we study the determinant of its Jacobian |�Ḡ | (Sec-
tions 5 and 6). The polynomial |�Ḡ | can have a high order in both
its spatial and temporal variables (Appendix A). To ensure a conser-
vative answer, we employ a custom bisection root-�nding method
controlled by an accuracy parameter X > 0. Let C∗ denote the earliest
time at which Ḡ (f) becomes invalid (i.e., |�Ḡ | turns negative). We
return a time C∗ > C∗ − X and a point % ∈ f such that |�Ḡ | is positive
everywhere for C ≤ C∗, and |�Ḡ (%, C) | becomes negative for some
C ≤ C∗ + X . This guarantees that the element can safely deform up to
time C∗ while the point % is used to adaptively re�ne the quadrature

rule, steering the simulation away from invalid con�gurations (Sec-
tion 7). If the element remains valid throughout, we simply return
C∗ = 1.

The parameter domain of a dynamic element has both space and
time dimensions. Our test proceeds by bisecting the time dimension:
it maintains lower C∗ and upper C∗ bounds for the critical inversion
time, and terminates when the di�erence between these bounds
is smaller than X , or when the element is con�rmed to be valid
throughout the interval. The algorithm employs a priority queue of
sub-domains, which are created by recursively splitting the initial
space-time domain.
For a given sub-domain (, we compute a minimum inclusion

function that returns an interval � , which is guaranteed to contain
the minimum value of |�Ḡ | ((): if � is strictly positive, the element is
valid in (; if � is strictly negative, the element is invalid somewhere
within ((but it is not necessarily invalid everywhere in (); if �
contains zero, nothing can be said and further re�nement of (is
necessary. The minimum inclusion function is a crucial component
of ourmethod; details on its de�nition and computation are provided
in Sections 4.3 and 6.1, respectively.
Another key aspect of the algorithm is the decoupling of re-

�nements in the spatial and temporal dimensions. While the time
dimension may require re�nement until the interval between C∗ and

C∗ is lower than X , the spatial dimensions usually need less re�ne-
ment. In essence, bisection along the time axis is primarily driven
by the need to narrow the bounds of C∗, while subdivision of the
spatial domain is employed to resolve indeterminate con�gurations.
Details and pseudo-code are given in Section 5.1.
To account for numerical errors, we employ interval arithmetic.

The value of parameter X allows for a trade-o� between computation
time and the accuracy of the estimation; however, regardless of the
parameter choice, the algorithm always provides a conservative
estimation.

Example. Consider the quadratic element in Figure 4(a). It is valid
at C = 0, becomes invalid at some intermediate time C∗ < 0.5, and
then returns to a valid state at a later time, remaining valid until
C = 1.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

https://gitlab.com/fsichetti/hocgv

4 • Federico Sichetti, Zizhou Huang, Marco Attene, Denis Zorin, Enrico Puppo, and Daniele Panozzo

Fig. 4. (a): A 2D quadratic element with linear trajectories is valid at the start and end positions but locally inverted during the transition. (b): Its parametric
domain is an upright triangular prism, where the vertical axis represents time and each horizontal slice represents the space domain at a given time. The red
region denotes the portion of the domain in which the determinant | �Ḡ | is not positive. The dynamic element’s Jacobian determinant is a trivariate polynomial
in b1, b2, C of order 2 in its space variables and order 2 in the time variable. (c): The root finding algorithm bisects the time domain and quadrisects the spatial
domain to isolate a thin slice [C∗, C∗ + X] containing the critical time of inversion C∗. In the first step, both space and time dimensions are refined, generating
eight sub-domains, which are pushed into a priority queue. (d): For clarity we show a side view for the following steps. Only the time dimension is bisected:
the analysis of sub-domains that do not intersect the invalid region increases the value of C∗ while the analysis of sub-domains that do intersect the invalid

region decreases the value of C∗ until convergence. (e): If all dimensions were refined at all steps, many more sub-domains would be generated, thus killing
performance.

The parameter domain for this dynamic element can be visualized
as in Figure 4(b) with an upright triangular prism, where each hori-
zontal slice of the prism represents the spatial domain at a speci�c
time, and time progresses along the vertical axis from 0 to 1. Notably,
the element inversion occurs within a localized wedge (red volume
in the �gure) during the times when the element is invalid. In gen-
eral, inversions can occur anywhere within the domain, including
regions away from vertices.

The minimum inclusion function is evaluated �rst for the whole
prism. The result is an interval that contains zero, thus the domain
is subdivided as in Figure 4(c) along both the time and the space
dimensions, and eight sub-prisms are pushed to the priority queue.
While processing the four prisms corresponding to the time interval
[0, 0.5], the minimum inclusion function returns a strictly positive
interval for three of them, which are discarded from the queue;
and it returns a strictly negative interval for the fourth one, which
intersects the red wedge: this domain is bisected only in the time
dimension and its two children are pushed onto the queue. Sub-
domains spanning earlier times are processed �rst.
In the subsequent re�nements (Figure 4(d), side view), the mini-

mum inclusion function will always be strictly negative, hence only
bisection in the time dimension will occur: the analysis of valid
intervals that do not intersect the red wedge contributes to increas-
ing the value of C∗ while the analysis of intervals that do intersect

the red wedge contributes to decreasing the value of C∗, until con-
vergence. Note that, if the domain were always subdivided along
space and time, as in Figure 4(e), many more subdomains would be
generated and the algorithm could become much slower. For the
3D order 3 armadillo dataset (Table 2, Figure 9), with 10% target
error, the naive approach has an average processing time of ∼7<B

per element, whereas our approach takes ∼230`B per element on

average. For higher element orders, or queries with higher precision,
the maximum number of subdivisions used in the naive approach
must be limited (otherwise the check will consume unreasonable
amounts of memory), and the test can fail to produce an estimate
within precision on some elements.

3 RELATED WORK

We brie�y describe polynomial bases and their use in graphics,
methods for checking static and continuous validity of elements,
and discuss their application in FEA and meshing. We conclude with
an overview of robust predicate evaluation techniques, which we
use in our algorithm.

High-Order Bases and Geometry for Finite Element Analysis. Linear
basis functions are often a sub-optimal choice in many contexts.
For example, Schneider et al. [2022] advocate for the use of high-
order bases for elliptic PDEs; Bargteil and Cohen [2014], Mezger
et al. [2009], Suwelack et al. [2013], Ushakova [2011] use high-order
elements for animation; and Mandad and Campen [2020] propose to
use a high-order basis for parametrization. Our algorithm provides
a guaranteed-conservative check for the validity of these elements,
increasing the robustness of any method using a high-order basis.

A related, but distinct, concept is the use of high-order geometry,
where the geometry of an element is represented using a high-order
polynomial. More commonly,�0 [Jiang et al. 2021a] or�: geometric
maps (IGA) [Cottrell et al. 2009] are used. The latter option is popular
in mechanical engineering, where IGA envisions the use of the same
representation for both interpolating the physical quantities and for
representing the geometry.

Despite the di�erent uses, our algorithm applies to generic poly-
nomials, hence it can be used as is to ensure the validity of the
geometric map.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

High-Order Continuous Geometrical Validity • 5

Static Element Inversion Check. The special case of checking the
geometric validity of a linear triangle/tetrahedron in a static setting
has been solved in a seminal paper by Shewchuk [1997], where
a robust predicate called orient2d/orient3d is introduced. This
paper revolutionized mesh generation and simulation, providing a
reliable, yet e�cient, solution to one of the basic primitives used by
meshing and simulation algorithms. To the best of our knowledge,
this approach has not been extended to elements with higher order;
such extension is challenging because an element may �ip at certain
points while remaining valid at others, as in the example shown on
the right side of Figure 2.

For high-order simplicial elements, a common approach to test for
element inversion consists in testing only their quadrature points
[Dey et al. 2001; Gargallo-Peiró et al. 2015; Maas et al. 2012; Schnei-
der et al. 2019]: while e�ective at avoiding NaNs in the integration
of certain diverging elastic potentials, this approach is not conser-
vative, leading to incorrect stresses (Figure 13). An e�cient method
has been introduced by Johnen et al. [2018, 2013, 2014], where the
Jacobian determinant of the element is represented in Bézier form:
the inversion check then reduces to testing the positivity of the
Bézier coe�cients as they undergo adaptive re�nement. Their im-
plementation relies on �oating point arithmetic, and therefore it is
not conservative and can miss inversions (we provide a numerical
example in Appendix E). We take inspiration from this check and
similarly use adaptive Bézier subdivision to derive a continuous
test: our algorithm solves a di�erent problem by adding the time
dimension and is designed to be conservative due to its judicious
use of rational and interval arithmetic.

For the special case of hexahedral elements, which are commonly
used in commercial �nite element analysis software, this problem
has been extensively studied by Ushakova [2011]. Unfortunately,
these tests are insu�cient to guarantee validity but are used nonethe-
less due to their e�ciency. Vavasis [2003] proposes a su�cient con-
dition but does not provide a conservative algorithm that takes
advantage of it. Johnen et al. [2017] propose an optimized version of
Johnen et al. [2014] speci�cally for linear hexahedral elements, how-
ever, the approach still su�ers from the same �oating point issues
as the original test. George and Borouchaki [2014] similarly pro-
pose a recursive subdivision-based method for static tensor product
elements; we are not aware of a publicly available implementation
of this method.

A radically di�erent approach is taken by Marschner et al. [2020],
where a Sum-of-Squares (SOS) relaxation is used to compute the
minimum Jacobian determinant, reducing the problem to solving a
sequence of small semide�nite programming problems of increasing
complexity. The method o�ers generality and an elegant formu-
lation, but is relatively expensive computationally (multiple SDP
solves per element), and only guarantees injectivity up to numerical
precision of an iterative convex solver, which might result in invalid
elements.
All the methods described above are designed to handle static

checks exclusively, which is insu�cient for validating deforming
elements over time.

Continuous Element Inversion Check. To the best of our knowl-
edge, the only paper explicitly addressing the problem of checking

the validity of an element that deforms over time is by Smith and
Schaefer [2015]. They propose an algorithm to estimate the safest
step before an inversion for 2D linear elements by using the closed
form of the roots of a degree 2 polynomial. Their approach is how-
ever not conservative due to �oating point rounding, as we show in
Section 8. Furthermore, the method does not scale to linear 3D ele-
ments – where the polynomial is of order 3 and robust root �nding
is not trivial – nor higher order elements – where the polynomial
is multivariate and closed forms for the roots may not even be
available.

The problem is also discussed by Anderson et al. [2014] for high-
order element remapping and by Dobrev et al. [2019] for high-order
meshing, however no algorithm for the validity check is proposed.
Our algorithm could be used in their setting to provide a conserva-
tive validation of their resulting elements.

High-Order Meshing. High-order meshing requires a high-order
validity check to ensure that elements are valid after curving. We
refer to Geuzaine et al. [2015] and Jiang et al. [2021b] for an overview
of the state of the art of high-order meshing. Our contribution
can be used, in its reduced form for static validity, as a provably
conservative check in any of these meshing algorithms to increase
their robustness.

Interval Arithmetic. According to the IEEE 754 standard, the re-
sult of a �oating point operation is a rounded value of the exact
result. Instead of computing a single rounded value, one can com-
pute an interval that contains the exact result by simply rounding
in both directions. Replacing FP numbers with intervals slows the
calculations by an order of magnitude on average but, on the other
hand, enables a provably correct implementation of geometric al-
gorithms [Snyder 1992]. Intervals are provided by many existing
libraries such as CGAL [Brönnimann et al. 1998], Boost [Schling
2011], Filib and Filib++ [Lerch et al. 2006], BIAS [Knuppel 1994] and
GAOL [Goualard 2005]. We point the reader to Tang et al. [2023]
for a detailed comparison of these tools. When full portability is not
required, modern SIMD architectures can be exploited to speed up
interval arithmetic signi�cantly. The basic idea is to store both the
bounds in a single register that can host 128 bits, which is the space
required by two double precision FP numbers, and then perform
each operation on the entire register simultaneously. This approach,
�rst introduced by Lambov [2008], is employed in the numeric ker-
nel of the indirect predicates library [Attene 2019], which we use in
our implementation.

We use intervals to represent inclusion functions and to guarantee
that any possible rounding error is always tracked so as to provide
a correct polynomial evaluation.

4 PRELIMINARIES AND NOTATIONS

We address =-dimensional (= = 2, 3) high-order meshes consisting of
elements of various types. The geometry of every element is de�ned
by a polynomial map. We will refer to the order ? of a polynomial as
the maximum exponent of a single variable (as opposed to the usual
notion of degree). Table 1 gives a summary of symbols de�ned in
the following and used throughout.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

6 • Federico Sichetti, Zizhou Huang, Marco Attene, Denis Zorin, Enrico Puppo, and Daniele Panozzo

Table 1. Symbols used in the text and where they are defined.

Symbol Meaning Def.
= dimension of element and embedding space 4
B dimension of simplicial part of element 4.1

f, f=B static reference element (with dimensions) 4.1
b1, . . . b= spatial coordinates 4.1

? order of an element / polynomial 4.2
G geometric map of an element 4.2
|�G | Jacobian determinant of G 4.2
I intervals on the real line 4.3
□5 inclusion function for 5 4.3
□min 5 minimum inclusion function for 5 4.3

C time coordinate 5
f̄, f̄=B dynamic reference element (with dim.) 5
Ḡ dynamic geometric map of an element 5
C∗ minimum time at which |�Ḡ | vanishes 5

C∗, C∗ lower and upper bounds to C∗ 5
X user-speci�ed accuracy 5

;max maximum level of recursion 5
k−,k+ time-only subdivision maps 5
k@ @-th subdivision map 5
C
?
f subset of indices of corners of element f 6

T
±
B→B

time-only subdivision matrix 6

T
@

B→B
@-th subdivision matrix 6

Γ
?
f set of domain points of order ? on f A
W8 domain point A
I
?
f set of indices of points of Γ

?
f A

L<8 8-th Lagrange polynomial of order< A
B<8 8-th Bernstein polynomial of order< A
5 L vector of coe�cients in Lagrange form A
5 B vector of coe�cients in Bézier form A

TL→B transition matrix from Lagrange to Bézier A

4.1 Reference Element Domains

For each type of element, we de�ne a common reference domain (or
reference element) f=B ⊂ [0, 1]

= to use as the coordinate domain.

Definition 1 (Reference Domain). Let =, B ∈ N, 1 ≤ B ≤ =. The

=-dimensional reference domain f=B ⊂ [0, 1]
= is the locus of points

with coordinates (b1, . . . , b=) that satisfy the system of inequalities:

b8 ≥ 0 ∀8 ∈ {1, . . . , =}

1 −

B∑
8=1

b8 ≥ 0 (1)

b8 ≤ 1 ∀8 ∈ {= − B + 1, . . . , =}

With this notation, we have a general parameter space that works
for all the most commonly used FEM elements. The element f11 is

the unit segment; f21 is the unit square; f22 is the standard triangle;

f31 is the unit cube; f
3
2 is the unit triangular prism; f33 is the standard

tetrahedron. More generally, f=B is the tensor product of a standard
B-simplex with a standard (= − B)-hypercube1.

1Note that, the unit segment can be seen both as a 1-simplex and as a 1-hypercube;
to avoid any ambiguity, we always treat it as a simplex, so that, e.g., the unit square

Fig. 5. Reference elements with domain points of order 3: triangle, square,
tetrahedron, hexahedron, prism.

Fig. 6. Above: A domain f2
2 with its domain points of order 3 and the

geometric map G to the physical element G (f2
2) with Lagrange control

points. Below: likewise for an element f3
3 of order 2.

4.2 High-Order Elements

A generic polynomial 5 : f −→ R can be de�ned with a basis of
polynomials: we consider here the Lagrange basis – which is most
common in FEM – and the Bernstein basis that gives the Bézier form.
Both representations de�ne 5 as a linear combination of the basis
functions with control coe�cients associated with domain points

that form a regular grid over the reference element; the number of
domain points sets the order ? of the polynomial (Figure 5).
For a given order and dimension, pre-computed conversion ma-

trices allow us to convert between these two representations in
both directions. The Lagrange and Bézier forms and the conversion
matrices are detailed in Appendix A.

Geometric Map. The geometric map G : f=B −→ R
= that maps a

reference element f=B into the physical element G (f=B) is represented
by specifying its set of control points, where each control point is a
=-dimensional point (Figure 6). Each coordinate of G is expressed
with a multivariate polynomial, which is the tensor product of a
B-variate polynomial of degree ? with (=−B) univariate polynomials
of degree ? , each in a di�erent variable. It follows that the map G

has order ? in all its variables (even though its total degree may be
higher).
In the following, we study the determinant of the Jacobian �G

of the geometric map G , denoted |�G |, which is also a multivariate
polynomial in the same variables as G , but of a di�erent order. In

is regarded as the tensor product of a 1-simplex with a 1-hypercube, rather than as a
2-hypercube.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

High-Order Continuous Geometrical Validity • 7

particular, the number of terms of |�G | rapidly increases with the
dimension and order of the element. See Appendix A for details.

4.3 Minimum Inclusion Function

Informally speaking, given a real function 5 and a domain � , an
inclusion function for 5 over � returns an interval that bounds the
range of values of 5 in� . Inclusion functions are widely used in root
�nding and in the evaluation of robust predicates [Snyder 1992]. In
our case, we are rather interested in an interval that just contains
the minimum value of 5 .

Let I be the space of intervals on the real line. For 0 = [0, 0] ∈ I, let
us de�neF (0) = 0−0 the width of interval 0. Let� = 01×· · ·×0= ∈

I= be a =-dimensional interval; we extend the de�nition of width as
F (�) = max=9=1F (0 9) . Given � ⊆ R= compact, we further extend

the de�nition of width asF (�) = min�⊇� F (�).
Let Ω ⊆ R= be a compact domain, let 5 be a real function de�ned

on Ω, and let us denote P(Ω) the subsets of Ω. Given a function
5 : Ω −→ R, an inclusion function for 5 is a function □5 : PΩ −→ I

such that, for any � ⊆ Ω we have

∀b ∈ � 5 (b) ∈ □5 (�) .

We say □5 to be convergent if for any � ⊆ Ω

F (�) → 0⇒ F (□5 (�)) → 0.

In particular, if � shrinks about b , then □5 (�) shrinks about 5 (b).

Definition 2 (Minimum inclusion function). A minimum in-

clusion function for the function 5 is a function □min 5 : P(Ω) −→ I

such that, for any � ⊆ Ω we have

min
b∈�

5 (b) ∈ □min 5 (�).

If the lower end of □min 5 (�) is positive, we know that 5 is always
positive in � ; if the upper end is negative, we know that 5 has
negative values, but is not necessarily negative everywhere, in � ;
otherwise, nothing can be said about the sign of 5 in � .
A convergent inclusion function can be used to �nd a root of

a function 5 by subdividing the initial domain Ω until it becomes
su�ciently small. Likewise, one can use a convergent minimum
inclusion function to �nd the portions of Ω where 5 is positive, by
recursively subdividing the domain. The type of subdivision used
to perform re�nement depends on the shape of Ω. For instance,
while bisection can be used for a multi-interval domain, simplicial
domains may require less trivial subdivision rules (Appendix B).

4.4 Interval and Rational Arithmetic

Interval arithmetic consists of a set of operations de�ned on the
set of real intervals I such that if b ∈ �b ∈ I and Z ∈ �Z ∈ I, then
(b∗Z) ∈ �b ∗�Z , where ∗ in the right-hand side is the interval version
of the operation. If the exact result of an operation on �oating
point numbers falls between two representable values, rounding
is required. We make our computations conservative by replacing
�oating point numbers with singleton intervals (i.e., intervals with
matching endpoints), and rounding the left end of the result down
and the right end up for every subsequent interval operation. In our
code, we use the implementation of Attene [2020]. More details are
provided in Appendix C.

Interval arithmetic does not prevent the propagation of error; it
merely keeps track of it. One way to implement exact arithmetic is
via rational numbers: as long as an algorithm only involves rational
operations, we can represent numbers exactly as fractions of integer
values since every �oating point number is also rational. The main
drawback of rational arithmetic is that it can be orders of magnitude
slower than interval arithmetic because the bits needed to encode
each fraction increase with computations. For this reason, our use
of rational arithmetic is limited to o�-line computations.

5 CONTINUOUS GEOMETRICAL VALIDITY

In a dynamic simulation, the elements of the mesh move and deform
over time. Like space, time is discretized into time steps, which are
typically regular. We assume that the control points move along
straight-line trajectories at each time step, and, without loss of
generality, we can assume each transition occurs between time
C = 0 and time C = 1. Following De�nition 1 we have:

Definition 3 (Dynamic reference element). Let f=B be a refer-

ence element. The dynamic element f̄=B of f=B is the (=+1)-dimensional

reference element f=+1B = f=B × [0, 1].

Assuming linear trajectories, the dynamic geometric map Ḡ :

R=+1 → R= of order ? for f̄=B is expressed by linear interpolation
of the =-dimensional geometric maps G0 (b) and G1 (b) of the static
element at the two consecutive time steps:

Ḡ (b, C) = G0 (b) + C (G1 (b) − G0 (b)) . (2)

This map is of order ? in the b variables and linear in C .

5.1 Continuous Validity Test

Assuming that the input element is valid at time C = 0, the continuous
validity test consists of determining whether or not the Jacobian
determinant |�Ḡ (b) | is everywhere greater than 0 on f̄ at all times
in [0, 1]. If this is not the case, the algorithm should �nd the earliest
time C∗ ∈ (0, 1] in which the element becomes invalid – hence, it is
valid within [0, C∗).

Target accuracy. Since �nding an exact solution is not necessary
and very expensive, we instead settle for a conservative estimate
C∗ that is close to C∗ up to a given user-provided threshold X , i.e.
C∗ ∈ [C∗, C∗ +X]. Moreover, since we assumed that C∗ > 0, we require
that C∗ be strictly positive as well, regardless of the value of X . This
threshold is used to trade o� accuracy and time performance.

Early termination. An intrinsic challenge of both the static and
dynamic problems is that certifying the positivity of a polynomial
can be arbitrarily hard. Therefore, there is no upper bound on the
number of subdivisions required to assess the validity of an element.

To prevent the algorithm from taking unreasonable time, we em-
ploy a termination criterion that triggers when re�nement becomes
excessive. In these extreme cases, we halt and provide an estimate
C∗ that may not be within X of the true value C∗, but is nevertheless
conservative.
Let the depth of a subdomain (be the number of subdivisions

required to obtain (from the initial domain. In our implementation
we stop when the depth of a subdomain (exceeds a threshold ;max.
How often this condition is triggered in practice depends on the

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

8 • Federico Sichetti, Zizhou Huang, Marco Attene, Denis Zorin, Enrico Puppo, and Daniele Panozzo

dataset and element type. In our benchmark, choosing a value of
;max = 7 was enough to reach the desired precision of 10−2 on all
but very few 3D tensor product elements. We refer to Table 2 and
Section 9 for details.

Minimum inclusion function. We rely on a convergent inclusion
function, which comes together with a procedure to decompose an
element into sub-elements. For the sake of clarity and generality, we
�rst describe our algorithm avoiding the details on how we de�ne
our inclusion function and domain subdivision strategy, which we
detail in Section 6. We also use � = |�Ḡ | as a short-hand notation for
the determinant of the Jacobian of the dynamic element at hand.
Given a generic inclusion function □� on the domain f̄=B , we de-

�ne a minimum inclusion function as follows: let □� (�) = [�� , ��]
then

□min � (�) = [�� , min
b̄8 ∈D�

� (b̄8)],

where D� is a small set of samples in � . In practice, we sample �

at these points to bound the minimum of � from above. Note that,
if � is negative at any of those samples, we know that the element
becomes invalid in � .

Subdivision Maps. Given a reference domain f = f=B , we de�ne a
set of & linear maps {k@ : f −→ f}@ called the subdivision maps of
f , and we callk@ (f) a subdomain of f ; we require that the union of
all subdomains is f , and the intersection of any two subdomains is
either empty or has dimension less than =. We de�ne the standard
subdivision maps for = ∈ {2, 3} that we use in our implementation
in Appendix B. In the following, we always assume that & = 2= .
For a time dependent reference domain f̄ = f̄=B , its subdivision

maps are the same as f=+1B , but we also de�ne two additional time

subdivision maps, denotedk− andk+, such thatk− (f̄) andk+ (f̄)
are respectively the lower and upper half of f̄ when bisected in the
time dimension only.

Pseudo-Code. The pseudo-code of the algorithm is given in Algo-
rithm 1. The algorithm takes in input a polynomial � (b, C) de�ned
on domain f̄ and the thresholds X and ;<0G and returns a time
C∗ without invalid con�gurations, and within a time X of an in-
valid con�guration. The algorithm keeps internal current lower
and upper bounds for C∗, initializing them to 0 and 1, respectively.
Given a subdomain (⊂ f̄ , pseudocode functions StartTime(()
and EndTime(() return respectively the minimum and maximum
values of the time coordinate for points in (.

The algorithm uses a priority queue % (line 2) of subdomains of f ,
with a related priority function ≺ (line 28) giving higher priority to
sub-domains that span intervals of time with an earlier start point
(that is, a lower minimum C). The initial domain f is pushed into the
priority queue % (line 5); then elements are popped from the % one
by one (line 13), and if their minimum inclusion function does not
guarantee their validity, they are subdivided and their subdomains
are pushed to % . See the next paragraph for the subdivision strategy.
This continues until the queue becomes empty or an early exit condi-
tion is met. By construction, the priority function ≺ guarantees that
when we pop an element (from the queue, then � is positive at all
times before StartTime((), and C∗ can then be updated accordingly.

Algorithm 1 Maximum valid time step with inclusion functions

1: functionMaxValidStep(� , X, ;max)
2: % ←PriorityQueue(≺) ⊲ priority queue for subdomains

3: C∗ ← 1 ⊲ initialize upper bound of C∗

4: C∗ ← 0 ⊲ initialize lower bound of C∗

5: Push(%, f)
6: � ← false ⊲ �ag of whether an invalidity has been found

7: ; ← 0 ⊲ maximum subdivision depth reached so far

8: while true do

9: if � ∧ (C∗ − C∗ ≤ X) ∧ (C∗ > 0) then ⊲ reached accuracy

10: return C∗ ⊲ conservative estimate of C∗

11: if IsEmpty(%) then
12: return 1
13: (←Pop(%) ⊲ get the next subdomain from %

14: ; ← max{;, Depth(()} ⊲ update maximum depth

15: if ; > ;max then ⊲ maximum level reached: give up

16: return C∗ ⊲ conservative estimate of C∗

17: C∗ ← StartTime(() ⊲ everything before this time is valid

18: � ←□min � (() ⊲ check minimum inclusion

19: if High(�) ≤ 0 then ⊲ there is an invalidity in (

20: if EndTime(()< C∗ then

21: � ← true

22: C∗ ← EndTime(()
23: Push(%,k− (()) ⊲ bisect on the C axis only

24: Push(%,k+ (()) ⊲ bisect on the C axis only

25: else if ¬(Low(�) > 0) then

26: for @ ∈ {1, . . . , &} do

27: Push(%,k@ (()) ⊲ subdivide on b and bisect on C

28: function ≺((0, (1) ⊲ priority function

29: if StartTime((0) ≠ StartTime((1) then ⊲ lower time �rst

30: return StartTime((0)<StartTime((1)
31: else ⊲ for ties, prioritize boxes most likely to be invalid

32: return High(□min � ((0))<High(□min � ((1))

Early exits occur if the required accuracy X is achieved (line 9),
meaning that the di�erence between C∗ and C∗ is less than X , or the
maximum depth ;max has been reached (line 15), meaning that we
pop from the queue an interval that comes from a sequence of ;max

subdivisions.

Subdivision Strategy. If the interval � returned by□min � (() is com-
pletely negative – meaning that (contains negative values of � (line
19) – then the upper bound C∗ is updated, and element (is bisected
along the time dimension only, with the two resulting subdomains
being pushed into % . Conversely, if interval � contains zero, the
element (is split along all its dimensions (line 25), including time,
according to the subdivision scheme of reference element f̄ ; again,
the resulting elements are pushed into % . Finally, no subdivision
is necessary if � only contains positive values, and the space-time
region occupied by (will not be considered again for the remainder
of the algorithm.
Note that, by bisecting only the time dimension (line 19), we

postpone any re�nement of the spatial dimensions until we �nd a
time interval in which � may potentially be positive everywhere.
This strategy allows us to avoid many unnecessary re�nements

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

High-Order Continuous Geometrical Validity • 9

in the space dimensions, and to decouple the subdivision on time
(controlled by accuracy X) from the subdivision in space (which does
not have an accuracy requirement).

6 IMPLEMENTATION

The implementation of our method requires designing a minimum
inclusion function □min 5 and a corresponding subdivision strategy
that uses robust computations while keeping the runtime su�ciently
low to enable its use within a simulation loop.

6.1 Inclusion Functions for Space and Time

As observed by Snyder [1992], interval arithmetic provides a univer-
sal way to design inclusion functions. Given a polynomial 5 : Ω −→

R and � ⊆ Ω, let �� be the smallest multi-interval containing � .
We could de�ne

□5 (�) = 5 (��),

where the evaluation of 5 on the right side is intended with interval
arithmetic, and thus returns an interval. Any strategy subdividing
� and reducing �� (e.g., bisection along all coordinates) provides a
convergent inclusion function.
We tried this approach, but the inclusion functions may be very

loose about 5 and require many re�nement steps to converge, or
even get stuck on nearly invalid elements due to the numerical error
accumulating too fast for the inclusion function to keep up with.
We compare the time performance for the static case only in Table 3.
We instead follow the approach proposed by Johnen et al. [2014] for
the static validity test and extend it to our continuous setting.

Overview of Bézier Re�nement. Let 5 be the order< polynomial
of which we want to �nd the minimum on f̄ (in our case, 5 = |�Ḡ |).
Our inclusion function is based on the Bézier representation of

5 and a recursive decomposition of f̄ . The reason why we want
to represent our polynomial in the Bézier basis is the convex hull
property [Farin 2001], by which the values of 5 on f̄ are bounded
by the minimum and maximum coe�cients of 5 when expressed in
the Bézier basis.

To obtain the vector of Bézier coe�cients 5 B of 5 , we �rst com-
pute its vector of Lagrange coe�cients 5 L , which can be obtained
by simply evaluating 5 at the domain points; then we premultiply
5 L with a change of basis matrix TL→B that we shall call transfor-
mation matrix, which is described in detail in Appendix A.

Let Ī<f be the set of indices of the control points of 5 and C̄<f ⊂
Ī<f be the set of indices corresponding to the corners of f̄ at time 1.
Since the Bézier basis is interpolating at the corners of the domain
(i.e. V 9 = 5 (W 9) for all 9 ∈ C̄<f), we de�ne the minimum inclusion
function as

□min 5 (f̄) = [min
8∈Ī<f

V8 , min
9∈ C̄<f

V 9] . (3)

Therefore, if all entries of 5 B are positive we know the element is
valid everywhere, and if any of the corner entries is non-positive
we know that the element is invalid at the end time. Otherwise, the
interval returned by the inclusion function contains zero, and we
need to re�ne the search by subdividing f̄ .
The subdivision of f̄ is performed via another set of change of

basis matrices, dubbed subdivision matrices, T
@

B→B
, for @ = 1, . . . , & .

Premultiplication of 5 B by these matrices gives a Bézier represen-
tation of 5 on a smaller portion of the domain, which can be used
to compute tighter bounds local to each subdomain. These matrices
are de�ned in Appendix A.

Time-only re�nement. Bisection in the time dimension only is
performed analogously by multiplication of 5 B with two time sub-

division matrices T−
B→B

and T
+
B→B

, also described in Appendix A.

6.2 Robust Computation

Rational Precomputation of matrices. All the transformation and
subdivision matrices TL→B , T

@

B→B
, and T

±
B→B

are only depen-
dent on element type (tetrahedron, hexahedron, etc.) and order, and
as such can be precomputed o�ine. Since we want to minimize
the accumulation of error in our computations, and all entries of
these matrices are rational, we construct these matrices using exact
rational arithmetic for each element type and order. The outcome
is a rational matrix, which we convert to intervals by rounding the
two endpoints outward if the exact value cannot be represented
as a �oating point number. The resulting interval is guaranteed
to contain the exact value of the fraction while being as tight as
possible.

Intervals. The input to our check is the set of Lagrange control
points for the elements of a mesh, represented in �oating point.
Each �oating point coordinate is converted to a singleton interval
(i.e. an interval with zero width) and all subsequent operations are
performed in interval arithmetic with conservative rounding.

Summary. The combination of rational precomputation and in-
terval arithmetic ensures that our algorithm is conservative while
maintaining a low computational cost (Section 8): the rational pre-
computation is performed only once o�ine and does not a�ect
runtime, while the use of interval arithmetic adds a minor (∼2×)
overhead over a direct �oating point implementation.

6.3 Acceleration

Global Queries. In practical applications, one is often interested
in the maximum time for which all elements are valid. We refer to
this as a global dynamic query and give a strategy to accelerate it.

After an invalid element has been found (with estimated valid time
step C∗), it becomes unnecessary to validate the other elements at
later times: C∗ will anyhow be the maximal allowed step. It might be
tempting to terminate early as soon as an inverted element has been
found. However, this is not conservative as some other elements
may still have a lower C∗. We thus keep track of the smallest value of
C∗ found in previous checks and leverage the fact that C∗ can never
decrease in Algorithm 1 to stop computation on an element as soon
as its estimate for C∗ exceeds the running minimum.
The order in which elements are processed matters for global

queries: it is bene�cial to process elements that are most likely
invalid �rst, as it will provide higher opportunities for this pruning
strategy to be e�ective. For this reason, we �rst sort the polynomials
according to their constant term, in ascending order. For the order 3
Armadillo mesh in Figure 9, this strategy improves the total running
time by about 60% over running the queries individually; whereas
the speedup is less relevant for the order 2 mesh (about 12%).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

10 • Federico Sichetti, Zizhou Huang, Marco Attene, Denis Zorin, Enrico Puppo, and Daniele Panozzo

Parallelization. Validity checks for meshes are trivially paral-
lelized by processing elements in batches. To avoid any synchro-
nization between di�erent threads, every batch of queries assigned
to a thread 8 does an independent sorting and keeps its own running
minimum C∗8 to use as an early termination condition, as explained
in the previous paragraph.

Precomputation of Jacobian determinant. The input to the sub-
division procedure is a Lagrange representation of the Jacobian
determinant polynomial of the element. This only depends on the
shape and order of the element, as well as its control points.
For each element type and order combination, we symbolically

compute the expression of each Lagrange coe�cient in terms of
the control point coordinates, and remove common subexpressions
with CSE [Muchnick 1997] (we use the implementation in SymPy
[Meurer et al. 2017]). This approach increases the compilation time
but provides dramatic runtime performance boosts: for the order 3
Armadillo dataset, we get a speedup of about 20×.

7 APPLICATION TO SIMULATION

Incremental potential time-stepping [Kane et al. 2000] is becoming
popular in graphics [Li et al. 2020] and biomechanics [Martin et al.
2024] due to its robustness to extreme deformation and contact[Chen
et al. 2022; Fang et al. 2024, 2021; Ferguson et al. 2023, 2021; Huang
et al. 2024a,b; Lan et al. 2022a, 2023, 2022b, 2021; Li et al. 2021, 2023a,
2022, 2024; Shen et al. 2024]. We brie�y summarize the approach
here, without contact handling, as it is relevant to motivate the need
for a continuous dynamic positivity check in physical simulation:
as part of this overview, we will show that the check alone is insuf-
�cient, as IPC also requires a consistent invalidity-aware quadrature
rules, which we introduce in Section 7.1.

7.1 Continuous Validity in Simulation

The updated displacement DC+1 of an object at the next time step is
computed solving an unconstrained non-linear energy minimization:

DC+1 = argmin
D

� (D,DC , EC), (4)

whereDC is the displacement at the step C , EC is velocity, and� (D,DC , EC)
is a time-stepping Incremental Potential [Kane et al. 2000]. We refer
to Li et al. [2020] for more details.

For common non-linear material models, this potential is in�nite
when an element has a negative Jacobian, as the Jacobian determi-
nant appears in the denominator of the expression. A physically
valid trajectory cannot reach a state with in�nite potential: however,
this is a challenging condition to enforce in practice.

Line Search. The potential � is minimized with a descent algo-
rithm (gradient descent or Newton), which computes a local approx-
imation of a descent direction: this approximation might, for a �nite
step length, cross a region with in�nite potential (Figure 7). This is
a typical challenge in collision detection [Wang et al. 2021b], but
is rarely considered for the elastic potential – the only work we
know that considers this problem, in 2D only, is Smith and Schaefer
[2015]. This challenge can be solved using a continuous inversion
check within the line search, which is the focus of our work. To the
best of our knowledge, state-of-the-art IPC solvers Li et al. [2020]

Fig. 7. Potential landscape and one descent step from the black point. The
descent step to the red point is invalid since it crosses an invalid region with
infinite potential.

Fig. 8. The function is infinite in the bright yellow region, and its integral
over the whole triangle is also infinite. Numerical integration using a fixed
quadrature rule (le�) erroneously produces a finite value. Our adaptive
quadrature technique (right) puts quadrature points in the infinite-valued
region and correctly captures the behavior of the function.

and Schneider et al. [2019] use a static check instead of a continuous
one, which cannot guarantee trajectory validity.

Quadrature. Non-linear elastic potentials cannot be integrated
exactly with numerical quadrature (as they are not polynomials),
leading to unbounded errors for diverging potentials. We show
in Figure 8 an example of an element with an in�nite potential
integrated with both a standard �xed quadrature rule and the adap-
tive quadrature derived by our algorithm: only in the second case
does the numerical integration correctly diverge. The use of a �xed
quadrature leads to solver failures as the direction computed us-
ing quadrature is not a descent direction and might thus block the
progress of the solver.

7.2 Invalidity-Aware Quadrature Rules

Our algorithm can output additional information to generate adap-
tive quadrature schemes: The goal is to produce a set of quadrature
points for the static element f such that at least one of the points
would end up in an invalid region at time C∗, correctly making the
integral computed using quadrature diverge at that time.

Tracking Subdivisions. In Algorithm 1, each subdomain keeps
track of the sequence of subdivisions of f̄ that were taken to produce
it. However, since we only require a quadrature rule for f and not f̄ ,
it is su�cient to keep track of spatial subdivisions: this means that
when an element is subdivided in time only usingk+ andk− , the

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

High-Order Continuous Geometrical Validity • 11

sequence of the children will match that of the parent; and when
an element is subdivided in all dimensions using the subdivision
schemek@ for f̄ , pairs of subdomains that span the same region of
space at di�erent times will share the same sequence.

To produce the adaptive quadrature rule, our algorithm uses the
sequence of spatial subdivisions of the element whose minimum
inclusion function reduced C∗ for the last time, or equivalently, the
element that found the earliest invalidity. Unless the early exit con-
dition for maximum depth is triggered, such invalidity is guaranteed
to be in [C∗, C∗ + X]. In the very rare cases when the algorithm fails
to �nd an invalid point and gives up earlier, we instead return the
subdivision sequence of the element with the deepest hierarchy,
which is likely to be very close to an invalid region. In this case, the
optimization step will still be guaranteed to be valid for its duration.

Adaptive Quadrature. This information is then used to partition
the static element by recursively subdividing it using the very same
sequence of subdivisions, as in Figure 8 (right). A standard quad-
rature rule is applied to every subelement of f , and the integral is
evaluated as the sum of integrals on all subdomains. However, in
order to guarantee that the newly placed quadrature points would
indeed intersect an invalid region in the full time step, it is required
that the quadrature rule contain all points in the sampling set D�

used to compute the minimum inclusion function, projected onto f ;
for example, if D� is the set of corners of f̄ , the selected scheme
must place quadrature points at the corners of f .

8 RESULTS

Our algorithm is implemented in C++, using PolyFEM [Schneider
et al. 2019] for �nite element (FE) system construction, IPC Toolkit
[Ferguson et al. 2020] for evaluating IPC potentials and collision
detection, Pardiso [Alappat et al. 2020; Bollhöfer et al. 2019, 2020]
for the large linear systems in our global Newton solves, [Attene
2019, 2020] for interval computation, GMP [Granlund and the GMP
development team 2012] for rational computation, and OpenMP
[Dagum and Menon 1998] for parallelization.
The simulation experiments are run on a cluster node with an

Intel Cascade Lake Platinum 8268 processor limited to 16 threads
and 32Gb of memory. The benchmark experiments are run single-
threaded on a laptop computer with an AMD Ryzen 7 4000 processor
and 16GB of memory.
Our reference implementation, used to generate all results, and

our evaluation datasets will be released as an open-source project.

8.1 Benchmark of filtered queries

Collection and Ground Truth. We collect queries of element in-
version checks from elastodynamic simulation data using IPC [Li
et al. 2020] and the Neo-Hookean elasticity model. We pick two 2D
models and two 3D models shown in Figure 9. We bend the bar and
compress the kangaroo in 2D, whereas for 3D models we twist them
by 90◦ while compressing them by 20%. Note the queries included
in the benchmark are a subset of the entire simulation, since the vast
majority of elements are valid. For collection, we discard all queries
where the initial con�guration is invalid, which might happen as
the positivity check in IPC [Li et al. 2020] is not conservative; in
each line search in the nonlinear solves, we evaluate the Jacobian

Armadillo Bunny

Deformed DeformedRest Rest

Kangaroo Bar

Deformed DeformedRest Rest

Fig. 9. Initial and final frames of simulations from which queries are ex-
ported. The parts in cyan are used as handles to twist and compress the
model while the deformation occurs in the parts in yellow.

at every quadrature point �8 for 8 = 1, 2, . . . , = and collect elements
with elements with min8 �8 ≤ 0 or min8 �8/max8 �8 < 0.2.

Our benchmark contains 172000 2D queries from the Kangaroo
model (orders 1 through 4), 54985 3D queries from the Armadillo
model (orders 1 through 3), 19800 3D queries from the Bunny model
(orders 1 through 3), 130291 queries for the Bar model of order 1,
and 31879 queries for the Bar model of order 2 (Table 2).

Correctness. To validate correctness we compute the times of
inversion by symbolically computing the roots of |�5 |withminimum
C using Mathematica [Wolfram Research 2023] (see Appendix D).
We restrict the ground truth to order 1 and 2 for triangles, and
order 1 for quads and tetrahedra, due to the limitations of symbolic
solvers: for a higher-order basis, Mathematica could not return a
result within 6 hours on some of the elements. To the best of our
knowledge, ours is the �rst dataset containing conservative times
of inversion. Our algorithm correctly detects all invalid elements
and returns conservative answers for the inversion times.

E�ciency. The average per-element cost of our algorithm in-
creases with the degree, from around 1.5`s for order 1 (both in
2D and 3D) to around 10`s for order 4 in 2D and 300`s for order
3 in 3D. Invalid elements are more expensive to process on aver-
age, as they require subdivisions until precision is reached, whereas
most valid elements can be resolved in a single iteration if all their
Bézier coe�cients are positive. See Table 2 and Figures 10 and 11
for details.
When restricted to the static case (i.e., check the validity of an

element at a given time), our algorithm becomes considerably faster
than the dynamic one (by a factor of about 50× on the order 3
Armadillo), and it has a running time slightly faster (2×) than the
non-conservative static baseline used in PolyFEM and FEBio, which
consists of checking the sign of |�G | obtained with (inexact) �oat-
ing point computations only at quadrature points thanks to our
optimizations. See Table 3 for details.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

12 • Federico Sichetti, Zizhou Huang, Marco Attene, Denis Zorin, Enrico Puppo, and Daniele Panozzo

Table 2. Results of our continuous validity test on 2D and 3D datasets element types and orders. We report the number of elements (total, valid on the whole
interval, invalid at some time) and processing time in microseconds per element (average, average for valid elements, average for invalid elements, median,
maximum, standard deviation). On some datasets, marked with an asterisk (*), the algorithm “gives up” on very few elements and returns a conservative
answer: see details in Section 9. In all other cases, the algorithm reaches the target precision of 1% on all elements.

Dataset Element = B ? Element count Time per element (`s)
tot val inv avg avg val avg inv med max std

Kangaroo Triangles 2 2 1 172800 146248 26552 1.60 1.32 3.10 1.40 205.40 0.85
2 172800 145602 27198 2.14 1.69 4.54 1.89 42.53 1.10
3 172800 145623 27177 3.83 3.10 7.75 3.28 67.26 1.86
4 172800 145613 27187 9.28 7.94 16.45 7.96 309.19 4.03

Bar 2D Quadrangles 2 1 1 112887 14816 98071 3.93 2.95 4.07 3.84 10203.74 34.23
2 83653 75085 8568 74.67 7.89 659.96 2.93 2046480.70 10296.53

Armadillo Tetrahedra 3 3 1 54985 51605 3380 1.56 1.44 3.43 1.47 21.58 0.53
2 54985 48599 6386 9.90 7.34 29.41 5.31 6726.90 40.37
3 54985 47988 6997 362.79 130.92 1953.05 44.00 78411.99 1593.81

Bunny Tetrahedra 3 3 1 19800 19561 239 1.47 1.45 3.51 1.40 49.38 0.63
2 19800 19058 742 7.27 5.91 42.22 5.31 1729.90 24.56
3 19800 18954 846 175.41 65.97 2627.34 43.02 60907.39 1294.73

Bar 3D Hexahedra 3 1 1 56031 24918 31113* 325.33 11.10 576.99 16.55 6650064.32 39487.14
Prisms 3 2 1 82403 56913 25490* 246.64 8.22 778.96 2.38 2407415.47 16401.57

8.2 Comparisons

We are not aware of any other algorithm that provides a continuous
validity check for elements of arbitrary order, so we compare it with
algorithms that solve only a subset of the problem.

Linear Continuous. For the special case of triangular elements
with linear basis, Smith and Schaefer [2015] propose to use a sym-
bolic solver to �nd the roots of |�5 |. While extremely e�cient (1`s
on average), this approach can fail to produce correct results due
to numerical errors: on the 26552 invalid elements in the linear
Kangaroo dataset (Figure 9), their method fails to detect inversions
13324 times, producing a time step larger than the ground truth
maximum. Attempting to be conservative with a "large" numerical
threshold of 10−5 still fails in 1563 tests (∼5%).

This method is limited to linear triangles, and cannot be extended
to other elements or degrees due to its reliance on closed-form
expressions for the roots.

Static High Order. For the special case of static validity check for
elements of arbitrary type and order, Johnen et al. [2014] introduce a
method based on adaptive subdivision. In the static case, our solution
implements the same algorithm, but with robust arithmetic and
additional pre-computations for the Jacobian and transformation
matrices. When implemented with double precision �oating point
arithmetic, this method is more e�cient than our static approach
(on the 3D Armadillo model of order 3 our method takes 3`B longer
per element on average, see Table 3), however it is not robust. We
provide one example of an inverted element incorrectly detected as
valid by the �oating point implementation in Appendix E. Code is
available at https://gitlab.com/fsichetti/hocgv.

Table 3. Comparison of methods for static validity checks, performed at
C = 1 on the order 3 Armadillo dataset. We list the number of detected
valid and invalid elements, the number of elements for which the test was
undecided, and the average and median computation times per element.
Sampling at quadrature points is fast, but incorrectly classifies several
invalid elements as valid; bisection with a robust interval-based inclusion
function is fast on "easy" elements, but struggles a lot with nearly-inverted
elements and fails to classify several of them; our implementation of the
Bézier refinement based inclusion check by Johnen et al. [2014] and our
conservativemethod give the same results; our method is guaranteed correct
at a slight performance cost. Our precomputations (last two rows) decrease
the computation time by at least an order of magnitude.

Static algorithm #val #inv #und avg `s med `s
Quadrature Points 48214 6771 - 16 16
Interval Bisection 46281 6561 2143 1400 23
FP Bézier (no optim.) 48050 6935 0 71 78
Ours (no optim.) 48050 6935 0 86 95
FP Bézier 48050 6935 0 5 5
Ours 48050 6935 0 8 8

8.3 Elastodynamic Simulation

We integrate our check within the PolyFEM software [Schneider
et al. 2019] and use it to reproduce a selection of the bundled elasto-
dynamic simulations. We report our �ndings as we integrated the
check, since they highlight some fundamental issues with existing
high-order FE solvers and the non-linear material models commonly
used in graphics and engineering.

Potential Formulation. In the simulation, we minimize the Neo-
Hookean energy with Newton’s method. The Neo-Hookean energy
density has the form of

F4 (�) :=
`

2
(Tr[��)] − 2 − 2 log(det �)) +

_

2
log2 (det �), (5)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

https://gitlab.com/fsichetti/hocgv

High-Order Continuous Geometrical Validity • 13

Table 4. Simulation Statistics. Columns from le� to right: simulation dimension, geometric and solution bases orders, number of cells, number of time steps,
peak memory usage, the average time of the simulation per time step, the average time of our check per time step, the average time of each check over the
entire mesh, and average time of the simulation per time step using the quadrature point check in PolyFEM instead of ours (baseline)

.
Order Mem Timing (sec)

dim geom soln # Cells # Steps (GB) total / step check / step check / query total / step (baseline)
Beam-twist 3 1 2 1740 400 1.4 16 5.7 0.067 7.6
Ring-twist 2 1 2 1136 100 0.7 0.72 0.16 0.011 0.15
Mat-twist 3 1 2 2166 250 1.3 10 2.9 0.069 6.9

Armadillo-rollers 3 1 2 5978 230 3.3 114 27 0.19 111
Microstructure 3 4 2 6414 25 2.9 531 472 5.6 52

where � is the deformation gradient matrix (2 × 2 or 3 × 3), _ and `

are Lamé parameters. Call �3 and �A the Jacobians of the deformed
element and rest element respectively, the deformation gradient is

� = �3 (�A)
−1 .

Suppose the rest element is valid, i.e., det �A > 0; then the positivity
of det � = det �3/det �A depends solely on det �3 , i.e. the Jacobian
determinant that we are checking. As long as det �3 > 0, Equation (5)
is valid.

Baseline Simulator. Our baseline simulator is PolyFEM [Schneider
et al. 2019], using the convergent IPC formulation [Li et al. 2023b]
on tetrahedral meshes, quadratic Lagrangian bases and the Neo-
Hookean material model [Ogden 2013]. PolyFEM uses only a static
inversion check on the quadrature points: in Figures 1 and 12 we
show that the �nal result contains many invalid elements leading
to NaN in stress (Figure 13A). These invalid elements are not de-
tected using the check on quadrature points alone, but are correctly
identi�ed by our conservative check (Figure 13B).

Conservative Line-Search Only. Replacing the static sampling in-
validity check with our conservative and continuous check without
adaptive quadrature leads to convergence issues in the solver. When
the elements become close to inversion, the negative gradient di-
rection is not a descending direction. This happens due to the error
in the numerical integration of the potential, that can be solved
by using our adaptive quadrature method. All the simulations in
our experiments su�er from this issue: the simulation halts after
several steps (twist-beam fails at time step 145, armadillo-rollers at
33, mat-twist at 141, ring-twist at 28, and the microstructure at 7).

Conservative Line-Search + Adaptive Quadrature. This solution
works but dramatically increases the number of non-linear iterations
needed in the Newton method. The remaining issue is that, while
the Neo-Hookean energy density is in�nite at the point where the
Jacobian determinant is zero, it grows at a slow rate. Mathematically,
when the Jacobian determinant is exactly zero at one point and
positive everywhere else, the integral of the Neo-Hookean energy
still may be �nite: consider the integral of a 1D function 5 (G) =

− log(|G |) on the interval [−1, 1], although it has a singularity at
G = 0, the integral is

∫ 1

−1
− log(|G |)3G = −2

∫ 1

0
log(G)3G = 2 < ∞

This is undesired since it leads to NaN in Equation (5) and stress
evaluation, causing failure of the simulation. This problem can be
mitigated by adding an additional barrier term

`
det �

to Equation (5).
While this solution formally �xes the problem (and also practically
�xes it in our experiments), it makes the potential harder tominimize
while changing the material model: we are not aware of any analysis
of this problem, and we believe it is an exciting avenue for future
work.

Observations. With these modi�cations, PolyFEM produces re-
sults without invalid elements. We note that given that the ma-
terial models are in�nite for invalid elements, the existing non-
conservative approaches often create solutions that are non-physical.
A more detailed study of the e�ect of these errors could be an inter-
esting venue for future work.
A second observation is that the issue with the slow growth of

the Neo-Hookean potential (and others, such as Mooney-Rivlin)
is likely due to the misuse of these models for deformations that
are outside of the regime they are designed to handle. It would be
interesting to carefully study experimentally how accurate these
material models are under extreme deformations, and see if it is
possible to design other material models which are numerically
more suitable for interior point optimization.

High-Order IPC. We reproduce simulation examples that use high-
order �nite elements in Ferguson et al. [2023], including Mat-twist,
Armadillo-rollers, and Microstructure (Figure 12). In Figure 1, we
include two more examples: Beam-twist and Ring-twist. A video of
these simulations is provided as additional material. In the Beam-
twist, we apply Dirichlet boundary conditions on the two sides of
the beam, rotate one side, and keep the other side �xed; in the Ring-
twist, we apply Dirichlet boundary conditions to rotate the inner
circle of the ring with constant speed and allow the outer circle free
to move. In Figure 12, the simulation results in Ferguson et al. [2023]
have �ipped elements since the simulator only checks Jacobian at
quadrature points in each element, while with our conservative
check and adaptive quadrature, there is no �ipped element. We
report the statistics in Table 4. For quadratic elements, the runtime
of our method is at worst comparable to the solve time and can be
as fast as 23% of the solve time; for quartic geometric elements and
quadratic solutions, our method is much slower than the solve time,
since the solve is on quadratic elements while the Jacobian check
should be performed on the quartic elements.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

14 • Federico Sichetti, Zizhou Huang, Marco Attene, Denis Zorin, Enrico Puppo, and Daniele Panozzo

Fig. 10. Statistics for the Kangaroo datasets. Top to bottom: elements of
order 1, 2, 3, 4; Le� to right: number of space subdivisions (#ssub), time
subdivisions (#tsub), and time to test an element. Green valid elements; red
invalid (C∗ < 1) elements.

9 CONCLUSIONS

We introduced a formulation for continuous inversion test and a
corresponding conservative and e�cient algorithm. Our solution
addresses an open problem in existing �nite element solver and
parametrization algorithms, increasing robustness and providing,
for the �rst time, a guarantee for interior point solvers to stay within
the space of valid elements. While the issue does appear for linear
elements, invalid elements are more commonly present in existing
algorithms that use high-order bases. We believe our algorithm,
and its reference implementation, will be a drop-in replacement for

Fig. 11. Statistics for the Armadillo datasets. Top to bottom: elements of
order 1, 2, 3; Le� to right: number of space subdivisions (#ssub), time sub-
divisions (#tsub), and time to test an element. Green valid elements; red
invalid (C∗ < 1) elements.

existing non-conservative checks used in many graphics algorithms
that will increase robustness for a minor performance cost.

Limitations. The cost of our algorithm increases with the poly-
nomial degree, especially for tensor product elements. While this
is compatible with many applications in graphics and engineering
(up to cubic tetrahedra, linear hexahedra/prisms), it is not scalable
to very high-order FEM, where elements of order 20 or more are
routinely used.
Additionally, similarly to all bisection algorithms, our approach

might require a lot of re�nement in certain queries where it is
challenging to �nd the roots: while we could not �nd such a case
for simplicial elements, our dataset contains some tensor product
elements (57 hexahedra and 26 prisms) for which the algorithm
exceeds the available memory on the personal machine where the
benchmark was run, and must be stopped early via the ;max param-
eter (set to a maximum subdivision depth of 7): our algorithm still
returns a conservative answer. Altering the subdivision strategy
mitigates this issue and allows the algorithm to converge on the
whole dataset: exploring better heuristics for subdivision may be a
fruitful endeavor for improvement.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

High-Order Continuous Geometrical Validity • 15

Mat-twist

Microstructure

Armadillo-rollers

Fig. 12. Simulation examples in [Ferguson et al. 2023] with (right) and with-
out (le�) our inversion check. The high-order elements with non-positive
Jacobian points are shown in red. On the le�, the numbers of flipped ele-
ments are 20, 45, and 24 from top to bottom. Our method guarantees the
positivity of Jacobian.

(A) (B)

Von Mises Stress0 3e7

Fig. 13. Von Mises stress distribution of Ring-twist in Figure 1. The NaN
is shown in red. (A) Without our method, NaN appears on elements with
flipped points. (B) With our Jacobian check and adaptive quadrature, the
stress is everywhere finite.

Future Work. Thanks to our approach, we discovered a previously
unreported numerical problem with existing material models under
extreme compression, which was obfuscated by inaccurate quadra-
ture rules. We believe evaluating these material models in extreme
compression regimes would be an interesting avenue for future
work. Additionally, we discovered that high-order elastodynamic
FE solvers often introduce inverted elements in their solutions: their
e�ect on simulation accuracy requires further investigation, which
is now possible since our test can detect them.

To further reduce the computational cost, it would be interesting
to investigate the possibility of parallelizing individual queries or

adapting our approach for massively parallel graphic processing
units.

ACKNOWLEDGMENTS

This work was supported in part through the NYU IT High Per-
formance Computing resources, services, and sta� expertise. This
work was also partially supported by the NSF grants OAC-2411349
and IIS-2313156, a gift from Adobe Research, and by the MUR-PRIN
Project N. 2022YB4NRS "FabDesign".

REFERENCES
Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf

Schenk, Jonas Thies, and Gerhard Wellein. 2020. A Recursive Algebraic Coloring
Technique for Hardware-E�cient Symmetric Sparse Matrix-Vector Multiplication.
ACM Transactions on Parallel Computing 7, 3, Article 19 (June 2020), 37 pages.

R. W. Anderson, V. A. Dobrev, Tz. V. Kolev, and R. N. Rieben. 2014. Monotonicity in high-
order curvilinear �nite element arbitrary Lagrangian–Eulerian remap. International
Journal for Numerical Methods in Fluids 77, 5 (Oct. 2014), 249–273. https://doi.org/
10.1002/�d.3965

M. Attene. 2019. Indirect Predicates Library. https://github.com/MarcoAttene/Indirect_
Predicates.

M. Attene. 2020. Indirect predicates for Geometric Constructions. Computer-Aided
Design 126 (2020), 102856.

A. W. Bargteil and E. Cohen. 2014. Animation of Deformable Bodies with Quadratic
Bézier Finite Elements. ACM Trans. Graph. 33, 3 (May 2014), 1–10.

Matthias Bollhöfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019. Large-
scale Sparse Inverse Covariance Matrix Estimation. SIAM Journal on Scienti�c
Computing 41, 1 (2019), 380–401.

Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli.
2020. State-of-the-Art Sparse Direct Solvers. Parallel Algorithms in Computational
Science and Engineering (2020), 3–33.

H. Brönnimann, C. Burnikel, and S. Pion. 1998. Interval Arithmetic Yields E�cient
Dynamic Filters for Computational Geometry. In Proc. 14th Symp. on Comp. Geom.
(Minneapolis, Minnesota, USA). ACM, New York, NY, USA, 165–174.

Yunuo Chen, Minchen Li, Lei Lan, Hao Su, Yin Yang, and Chenfanfu Jiang. 2022. A
uni�ed newton barrier method for multibody dynamics. ACM Trans. Graph. 41, 4,
Article 66 (July 2022), 14 pages. https://doi.org/10.1145/3528223.3530076

J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. 2009. Isogeometric Analysis: Toward
Integration of CAD and FEA. Wiley.

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard API
for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1 (jan 1998), 46–55.
https://doi.org/10.1109/99.660313

S. Dey, R.M. O’Bara, and M.S. Shephard. 2001. Towards curvilinear meshing in 3D: the
case of quadratic simplices. Computer-Aided Design 33, 3 (2001), 199–209.

V. Dobrev, P. Knupp, T. Kolev, K. Mittal, and V. Tomov. 2019. The Target-Matrix
Optimization Paradigm for High-Order Meshes. SIAM Jou. Sci. Comp. 41, 1 (2019),
B50–B68.

Yu Fang, Minchen Li, Yadi Cao, Xuan Li, Joshuah Wolper, Yin Yang, and Chenfanfu
Jiang. 2024. Augmented Incremental Potential Contact for Sticky Interactions.
IEEE Transactions on Visualization and Computer Graphics 30, 8 (2024), 5596–5608.
https://doi.org/10.1109/TVCG.2023.3295656

Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M. Kaufman. 2021. Guaranteed
globally injective 3D deformation processing. ACM Trans. Graph. 40, 4, Article 75
(July 2021), 13 pages. https://doi.org/10.1145/3450626.3459757

G. Farin. 2001. Curves and Surfaces for CAGD: A Practical Guide (5th ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Zachary Ferguson et al. 2020. IPC Toolkit. https://ipc-sim.github.io/ipc-toolkit/. https:
//ipc-sim.github.io/ipc-toolkit/

Z. Ferguson, P. Jain, D. Zorin, T. Schneider, and D. Panozzo. 2023. High-Order Incre-
mental Potential Contact for Elastodynamic Simulation on Curved Meshes. In ACM
SIGGRAPH 2023 Conference Proceedings (, Los Angeles, CA, USA,) (SIGGRAPH ’23).
Association for Computing Machinery, New York, NY, USA, Article 77, 11 pages.

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,
Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo. 2021.
Intersection-free rigid body dynamics. ACM Trans. Graph. 40, 4, Article 183 (July
2021), 16 pages. https://doi.org/10.1145/3450626.3459802

A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate. 2015. Distortion and quality
measures for validating and generating high-order tetrahedral meshes. Engineering
with Computers 31, 3 (2015), 423–437.

P.L. George and H. Borouchaki. 2014. Validity of Lagrange (Bézier) and rational Bézier
quads of degree 2. 99, 8 (2014), 611–632. https://doi.org/10.1002/nme.4696

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

https://doi.org/10.1002/fld.3965
https://doi.org/10.1002/fld.3965
https://github.com/MarcoAttene/Indirect_Predicates
https://github.com/MarcoAttene/Indirect_Predicates
https://doi.org/10.1145/3528223.3530076
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/TVCG.2023.3295656
https://doi.org/10.1145/3450626.3459757
https://ipc-sim.github.io/ipc-toolkit/
https://ipc-sim.github.io/ipc-toolkit/
https://ipc-sim.github.io/ipc-toolkit/
https://doi.org/10.1145/3450626.3459802
https://doi.org/10.1002/nme.4696

16 • Federico Sichetti, Zizhou Huang, Marco Attene, Denis Zorin, Enrico Puppo, and Daniele Panozzo

C. Geuzaine, A. Johnen, J. Lambrechts, J. F. Remacle, and T. Toulorge. 2015. The
Generation of Valid Curvilinear Meshes. Springer International Publishing, Cham,
15–39.

F. Goualard. 2005. Gaol: NOT Just Another Interval Library. https://sourceforge.net/
projects/gaol/.

T. Granlund and the GMP development team. 2012. GNUMP: The GNUMultiple Precision
Arithmetic Library (5.0.5 ed.). http://gmplib.org/.

Kemeng Huang, Floyd M. Chitalu, Huancheng Lin, and Taku Komura. 2024a. GIPC:
Fast and Stable Gauss-Newton Optimization of IPC Barrier Energy. ACM Trans.
Graph. 43, 2, Article 23 (March 2024), 18 pages. https://doi.org/10.1145/3643028

Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider,
Daniele Panozzo, and Denis Zorin. 2024b. Di�erentiable solver for time-dependent
deformation problems with contact. ACM Trans. Graph. 43, 3, Article 31 (May 2024),
30 pages. https://doi.org/10.1145/3657648

Z. Jiang, Z. Zhang, Y. Hu, T. Schneider, D. Zorin, and D. Panozzo. 2021a. Bijective and
coarse high-order tetrahedral meshes. ACM Trans. Graph. 40, 4 (2021), 1–16.

Z. Jiang, Z. Zhang, Y. Hu, T. Schneider, D. Zorin, and D. Panozzo. 2021b. Bijective and
coarse high-order tetrahedral meshes. ACM Trans. Graph. 40, 4 (2021), 1–16.

A. Johnen, C. Geuzaine, T. Toulorge, and J.-F. Remacle. 2018. E�cient computation of the
minimum of shape quality measures on curvilinear �nite elements. Computer-Aided
Design 103 (2018), 24–33.

A. Johnen, J.-F. Remacle, and C. Geuzaine. 2013. Geometrical validity of curvilinear
�nite elements. J. Comput. Phys. 233 (2013), 359–372. https://doi.org/10.1016/j.jcp.
2012.08.051

A. Johnen, J. F. Remacle, and C. Geuzaine. 2014. Geometrical Validity of High-Order
Triangular Finite Elements. Eng. with Comput. 30, 3 (2014), 375–382.

A. Johnen, J.-C. Weill, and J.-F. Remacle. 2017. Robust and e�cient validation of the
linear hexahedral element. Procedia Engineering 203 (2017), 271–283.

C. Kane, J. E. Marsden, M. Ortiz, and M. West. 2000. Variational integrators and the
Newmark algorithm for conservative and dissipative mechanical systems. Internat.
J. Numer. Methods Engrg. 49, 10 (2000), 1295–1325.

O Knuppel. 1994. PROFIL/BIAS - A fast interval library. Computing 53, 3 (1994), 277–287.
https://doi.org/10.1007/BF02307379

B. Lambov. 2008. Interval Arithmetic Using SSE-2. In Reliable Implementation of Real
Number Algorithms: Theory and Practice, P. Hertling, C. M. Ho�mann, W. Luther,
and N. Revol (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 102–113.

Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022a. A�ne
body dynamics: fast, stable and intersection-free simulation of sti� materials. ACM
Trans. Graph. 41, 4, Article 67 (July 2022), 14 pages. https://doi.org/10.1145/3528223.
3530064

Lei Lan, Minchen Li, Chenfanfu Jiang, HuaminWang, and Yin Yang. 2023. Second-order
Stencil Descent for Interior-point Hyperelasticity. ACM Trans. Graph. 42, 4, Article
108 (July 2023), 16 pages. https://doi.org/10.1145/3592104

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang.
2022b. Penetration-free projective dynamics on the GPU. ACM Trans. Graph. 41, 4,
Article 69 (July 2022), 16 pages. https://doi.org/10.1145/3528223.3530069

Lei Lan, Yin Yang, Danny Kaufman, Junfeng Yao, Minchen Li, and Chenfanfu Jiang.
2021. Medial IPC: accelerated incremental potential contact with medial elastics.
ACM Trans. Graph. 40, 4, Article 158 (July 2021), 16 pages. https://doi.org/10.1145/
3450626.3459753

M. Lerch, G. Tischler, J.W.V. Gudenberg, W. Hofschuster, and W. Kramer. 2006. FILIB++,
a Fast Interval Library Supporting Containment Computations. ACM Trans. Math.
Softw 32, 2 (2006), 299–324.

M. Li, Z. Ferguson, T. Schneider, T. Langlois, D. Zorin, D. Panozzo, C. Jiang, and D. M.
Kaufman. 2020. Incremental Potential Contact: Intersection- and Inversion-free
Large Deformation Dynamics. ACM Trans. Graph. (SIGGRAPH) 39, 4, Article 49
(2020).

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2023b. Convergent Incremental
Potential Contact. arXiv:2307.15908 [math.NA]

Minchen Li, DannyM. Kaufman, and Chenfanfu Jiang. 2021. Codimensional incremental
potential contact. ACM Trans. Graph. 40, 4, Article 170 (July 2021), 24 pages. https:
//doi.org/10.1145/3450626.3459767

Xuan Li, Yu Fang, Lei Lan, Huamin Wang, Yin Yang, Minchen Li, and Chenfanfu Jiang.
2023a. Subspace-Preconditioned GPU Projective Dynamics with Contact for Cloth
Simulation. In SIGGRAPH Asia 2023 Conference Papers (Sydney, NSW, Australia) (SA
’23). Association for Computing Machinery, New York, NY, USA, Article 1, 12 pages.
https://doi.org/10.1145/3610548.3618157

Xuan Li, Yu Fang, Minchen Li, and Chenfanfu Jiang. 2022. BFEMP: Interpenetration-free
MPM–FEM coupling with barrier contact. Computer Methods in Applied Mechanics
and Engineering 390 (2 2022). https://doi.org/10.1016/j.cma.2021.114350

Xuan Li, Minchen Li, Xuchen Han, Huamin Wang, Yin Yang, and Chenfanfu Jiang. 2024.
A Dynamic Duo of Finite Elements and Material Points. In ACM SIGGRAPH 2024
Conference Papers (Denver, CO, USA) (SIGGRAPH ’24). Association for Computing
Machinery, New York, NY, USA, Article 97, 11 pages. https://doi.org/10.1145/
3641519.3657449

S. A. Maas, B. J. Ellis, G. A. Ateshian, and J. A. Weiss. 2012. FEBio: Finite Elements for
Biomechanics. Jou. of Biomechanical Engineering 134, 1 (2012).

M. Mandad and M. Campen. 2020. E�cient piecewise higher-order parametrization
of discrete surfaces with local and global injectivity. Computer-Aided Design 127
(2020), 102862.

Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020. Hexahedral Mesh Repair via
Sum-of-Squares Relaxation. Computer Graphics Forum 39, 5 (Aug. 2020), 133–147.

L. Martin, P. Jain, Z. Ferguson, T. Gholamalizadeh, F. Moshfeghifar, K. Erleben, D.
Panozzo, S. Abramowitch, and T. Schneider. 2024. A systematic comparison between
FEBio and PolyFEM for biomechanical systems. Computer Methods and Programs in
Biomedicine 244 (2024), 107938.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kir-
pichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh,
Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P.Muller, Francesco Bonazzi,
Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry,
Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal,
Robert Cimrman, and Anthony Scopatz. 2017. SymPy: symbolic computing in
Python. PeerJ Computer Science 3 (Jan. 2017), e103. https://doi.org/10.7717/peerj-
cs.103

J. Mezger, B. Thomaszewski, S. Pabst, and W. Straßer. 2009. Interactive physically-based
shape editing. Computer Aided Geometric Design 26, 6 (Aug. 2009), 680–694.

Steven S Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan
Kaufmann, Oxford, England.

R.W. Ogden. 2013. Non-Linear Elastic Deformations. Dover Publications. https://books.
google.com/books?id=52XDAgAAQBAJ

Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis
Zorin. 2015. Elastic textures for additive fabrication. ACM Transactions on Graphics
34, 4 (July 2015), 1–12. https://doi.org/10.1145/2766937

B. Schling. 2011. The Boost C++ Libraries. XML Press (2011).
T. Schneider, J. Dumas, X. Gao, D. Zorin, and D. Panozzo. 2019. PolyFEM. https:

//polyfem.github.io/.
T. Schneider, Y. Hu, X. Gao, J. Dumas, D. Zorin, and D. Panozzo. 2022. A Large-Scale

Comparison of Tetrahedral and Hexahedral Elements for Solving Elliptic PDEs with
the Finite Element Method. ACM Trans. on Graph. 41, 3 (2022), 1–14.

Xing Shen, Runyuan Cai, Mengxiao Bi, and Tangjie Lv. 2024. Preconditioned Nonlinear
Conjugate Gradient Method for Real-time Interior-point Hyperelasticity. In ACM
SIGGRAPH 2024 Conference Papers (Denver, CO, USA) (SIGGRAPH ’24). Association
for Computing Machinery, New York, NY, USA, Article 96, 11 pages. https://doi.
org/10.1145/3641519.3657490

J. R. Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and Fast Robust
Geometric Predicates. Discrete & Computational Geometry 18, 3 (Oct. 1997), 305–363.

J. Smith and S. Schaefer. 2015. Bijective Parameterization with Free Boundaries. ACM
Trans. Graph. 34, 4, Article 70 (2015), 9 pages.

J Snyder. 1992. Interval Analysis For Computer Graphics. ACM SIGGRAPH (1992),
121–130.

S. Suwelack, D. Lukarski, V. Heuveline, R. Dillmann, and S. Speidel. 2013. Accurate
surface embedding for higher order �nite elements. In Proceedings of the 12th ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’13). ACM.

X. Tang, Z. Ferguson, T. Schneider, D. Zorin, S. Kamil, and D. Panozzo. 2023. A Cross-
Platform Benchmark for Interval Computation Libraries. In Parallel Processing and
Applied Mathematics, R. Wyrzykowski, J. Dongarra, E. Deelman, and K. Karczewski
(Eds.). Springer International Publishing, Cham, 415–427.

Thomas Toulorge, Christophe Geuzaine, Jean-François Remacle, and Jonathan Lam-
brechts. 2013. Robust untangling of curvilinear meshes. J. Comput. Phys. 254 (Dec.
2013), 8–26. https://doi.org/10.1016/j.jcp.2013.07.022

O. V. Ushakova. 2011. Nondegeneracy tests for hexahedral cells. Computer Methods in
Applied Mechanics and Engineering 200, 17–20 (2011), 1649–1658.

S. Vavasis. 2003. A Bernstein-Bezier Su�cient Condition for Invertibility of Polynomial
Mapping Functions. (2003).

Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele
Panozzo. 2021a. A Large-scale Benchmark and an Inclusion-based Algorithm for
Continuous Collision Detection. ACM Trans. Graph. 40, 5, Article 188 (sep 2021),
16 pages. https://doi.org/10.1145/3460775

B. Wang, Z. Ferguson, T. Schneider, X. Jiang, M. Attene, and D. Panozzo. 2021b. A
Large-scale Benchmark and an Inclusion-based Algorithm for Continuous Collision
Detection. ACM Trans. Graph. 40, 5 (2021), 1–16.

Inc. Wolfram Research. 2023. Mathematica, Version 13.3. https://www.wolfram.com/
mathematica Champaign, IL.

A LANGRANGE AND BÉZIER FORMS OF |�G |

Let 5 : f=B −→ R be a polynomial of order ? de�ned on a standard
element according to De�nition 1. We detail the representation of 5
in Lagrange and Bézier forms and the conversions between these
two representations.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

https://sourceforge.net/projects/gaol/
https://sourceforge.net/projects/gaol/
http://gmplib.org/
https://doi.org/10.1145/3643028
https://doi.org/10.1145/3657648
https://doi.org/10.1016/j.jcp.2012.08.051
https://doi.org/10.1016/j.jcp.2012.08.051
https://doi.org/10.1007/BF02307379
https://doi.org/10.1145/3528223.3530064
https://doi.org/10.1145/3528223.3530064
https://doi.org/10.1145/3592104
https://doi.org/10.1145/3528223.3530069
https://doi.org/10.1145/3450626.3459753
https://doi.org/10.1145/3450626.3459753
https://arxiv.org/abs/2307.15908
https://doi.org/10.1145/3450626.3459767
https://doi.org/10.1145/3450626.3459767
https://doi.org/10.1145/3610548.3618157
https://doi.org/10.1016/j.cma.2021.114350
https://doi.org/10.1145/3641519.3657449
https://doi.org/10.1145/3641519.3657449
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://books.google.com/books?id=52XDAgAAQBAJ
https://books.google.com/books?id=52XDAgAAQBAJ
https://doi.org/10.1145/2766937
https://polyfem.github.io/
https://polyfem.github.io/
https://doi.org/10.1145/3641519.3657490
https://doi.org/10.1145/3641519.3657490
https://doi.org/10.1016/j.jcp.2013.07.022
https://doi.org/10.1145/3460775
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

High-Order Continuous Geometrical Validity • 17

Lagrange form. Let Γ
?
f = (1/?)Z= ∩ f be a grid of uniformly

distributed domain points of f , and I
?
f be its set of indices (Figure 5).

The Lagrange basis of order ? consists of |Γ
?
f | order ? polynomials

such that for each point W8 ∈ Γ
?
f , L

?
8 (W 9) = X8 9 . A function 5 is

represented in the Lagrange basis as:

5 (b) =
∑
8∈I

?
f

~8L
?
8 (b), (6)

where ~8 = 5 (W8) for 8 ∈ I
?
f .

Bézier form. aThe same function 5 can be expressed equivalently
in Bézier form by using a Bernstein basis on the same set Γ

?
f of

domain points:

5 (b) =
∑
8∈I

?
f

V8B
?
8 (b), (7)

where the B
?
8 are Bernstein polynomials of order ? and the V8 are

their corresponding control coe�cients. Unlike the Lagrange case,
V8 equals 5 (W8) only at the corners of f . However, the graph of 5 is
contained in the convex hull of points (W8 , V8), providing a simple
way to bound 5 from below and above at all points of f [Farin 2001].

Transformation matrix. Let us denote 5 L the vector consisting
of all the ~8 , and likewise, 5 B the vector consisting of all the V8 , for
8 ∈ I

?
f . We can convert between the two representations through

transformation matrices [Johnen et al. 2014]:

5 L = TB→L 5
B 5 B = TL→B 5

L . (8)

Such matrices depend only on the reference element f=B and the
order ? thus can be computed once for each element type and
order. Matrix TB→L is easily computed by evaluation of Bernstein
polynomials on Γ

?
f :

(TB→L)8 9 = B
?
9 (W8) ∀8, 9 ∈ I

?
f (9)

and TL→B is the inverse of TB→L .

Subdivision matrices. For each @, we �rst build a transformation
matrix from the Bézier basis to the Lagrange basis that interpolates
the domain points k@ (Γ(<)) of the @-th subdomain. This is anal-
ogous to building matrix TB→L , by sampling the Bézier basis on
k@ (Γ(<)) instead of Γ(<):

(T
@

B→L
)8 9 = B

<
9 (k

@ (W8)) ∀8, 9 ∈ If (<). (10)

Then we multiply it with the Lagrange-to-Bézier matrix to build

T
@

B→B
= TL→BT

@

B→L
, (11)

which allows us to go directly from the Bézier coe�cients on the
domain to the Bézier coe�cients on each subdomain.

Time subdivision matrices. Time subdivision matrices de�ned by
plugging the time subdivision maps

k− (b, C) = (b, C/2), k+ (b, C) = (b, (C + 1)/2) (12)

in Equation (10) and using Equation (11) as above.

Representations of the Jacobian determinant. Given a standard
element f=B as above, let us de�ne<△ = =? − B and<□ = =? − 1.
Let us denote 80 =<△ − (

∑B
9=1 8 9) and b0 = 1 − (

∑B
9=1 b 9).

The Lagrange basis polynomials used to represent the Jacobian
determinant |�G (b) | on reference element f = f=B are:

Lf
81,...,8=

(b1, . . . , b=) =
©«

B∏
9=0

ℓ
8 9 ,<△
8 9

(b8 9)
ª®¬
©«

=∏
9=B+1

ℓ
<□,<□
8 9

(b8 9)
ª®¬

(13)

ℓ
@,<
9 (Z) =

∏
:∈{0,...,@}\{ 9 }

<Z − :

9 − :
(14)

The Bézier basis polynomials used to represent the Jacobian de-
terminant |�G (b) | on reference element f = f=B are:

Bf81,...,8= (b1, . . . , b=) =

((
<△

80, . . . , 8B

)
b
80
0 . . . b

8B
B

) =∏
9=B+1

1
<□
8 9
(b8 9) (15)

1
@
9 (Z) =

(
@

9

)
Z 9 (1 − Z)@− 9 (16)

where Bf81,...,8= is the product of an order<△ Bernstein polynomial
on the B-simplex basis, in the variables b1, . . . , bB , with an order<□
Bernstein polynomial on the (= − B)-tensor product basis in the
variables bB+1, . . . , b= , which is itself a product of (= − B) univariate
Bernstein polynomials of order<□. It is easy to see that

• the order of |�G (b) | in {b1, . . . , bB } is<△ = =? − B;
• the order of |�G (b) | in {bB+1, . . . , b=} is<□ = =? − 1.

Notice that on =-simplices (B = =) and =-hypercubes (B = 1), |�G | has
the same order in every variable.

Extension to Dynamic. For the dynamic case, we add a term for
time to the Bézier basis construction, an order= univariate Bernstein
polynomial in C :

B̄f81,...,8= (b1, . . . , b=, C) = B
f
81,...,8=,8C

(b1, . . . , b=)1
=
8C
(C) (17)

It is easy to see that the order of |�Ḡ | remains the same as the static
case in its spatial variables, while it is = in its time variable. The
number of polynomials in the Bernstein basis, which is equal to the
number of terms of the given polynomial, increases combinatorially
with the dimension = and order ? and is given by

=

(
=?

B

)
(=?)=−B , #̄ = # (= + 1), (18)

for the static and the dynamic case, respectively. Note that, this com-
binatorial growth poses intrinsic limitations to scaling the problem
up in degree and dimension. Nevertheless, it remains tractable for
the most common cases, as exempli�ed in Table 5.

B SUBDIVISION RULES

The subdivision functions k@ for the various types of elements
are listed below. Their related subdomains are shown in the insets
(red bullet = origin). The dynamic elements for = = 3 require 4D
hypercubes (for tensor product) and hyper-prisms (for simplicial
and mixed).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

18 • Federico Sichetti, Zizhou Huang, Marco Attene, Denis Zorin, Enrico Puppo, and Daniele Panozzo

Element name = B ? b1...B bB+1...= C #̄

Linear triangle 2 2 1 0 - 2 3
Quadratic triangle 2 2 2 2 - 2 18
Cubic triangle 2 2 3 4 - 2 45
Quartic triangle 2 2 4 6 - 2 84
Quintic triangle 2 2 5 8 - 2 135
Bilinear quadrangle 2 1 1 1 1 2 12
Biquadratic quadrangle 2 1 2 3 3 2 48
Bicubic quadrangle 2 1 3 5 5 2 108
Linear tetrahedron 3 3 1 0 - 3 4
Quadratic tetrahedron 3 3 2 3 - 3 80
Cubic tetrahedron 3 3 3 6 - 3 336
Quartic tetrahedron 3 3 4 9 - 3 880
Bilinear tri. prism 3 2 1 1 2 3 36
Biquadratic tri. prism 3 2 2 4 5 3 360
Trilinear hexahedron 3 1 1 2 2 3 108
Triquadratic hexahedron 3 1 2 5 5 3 864

Table 5. Order of | �Ḡ (b) | in the spatial variables b and the time variable C ,
and the number #̄ of its terms for a generic order ? map on f̄=

B .

Triangle.

k 1 (b) = (b1/2, b2/2)

k 2 (b) = ((b1 + 1)/2, b2/2)

k 3 (b) = (b1/2, (b2 + 1)/2)

k 4 (b) = ((1 − b1)/2, (1 − b2)/2)
1 2

3

4

Quad.

k 1 (b) = (b1/2, b2/2)

k 2 (b) = ((b1 + 1)/2, b2/2)

k 3 (b) = (b1/2, (b2 + 1)/2)

k 4 (b) = ((b1 + 1)/2, (b2 + 1)/2)

1 2

3 4

Tetrahedron. The subdivision of the tetrahedron is non-trivial: it
is split into four tetrahedra incident at the corners of the domain
(corresponding to subdomains 1–4) and a central octahedron, which
is further split into four tetrahedra (domains 5–8).

k 1 (b) = (b1/2, b2/2, b3/2)

k 2 (b) = ((b1 + 1)/2, b2/2, b3/2)

k 3 (b) = (b1/2, (b2 + 1)/2, b3/2)

k 4 (b) = (b1/2, b2/2, (b3 + 1)/2)

k 5 (b) = ((1 − b2 − b3)/2, b2/2, (b1 + b2 + b3)/2)

k 6 (b) = ((1 − b2)/2, (b1 + b2)/2, (b2 + b3)/2)

k 7 (b) = ((b1 + b2)/2, (1 − b1)/2, b3/2)

k 8 (b) = (b1/2, (b2 + b3)/2, (1 − b1 + b2)/2)

Hexa. The subdivision of a hexahedron works both for a static
hexahedral domain and a dynamic quad domain. In the latter case,
the third coordinate is time.

k 1 (b) = (b1/2, b2/2, b3/2)

k 2 (b) = ((b1 + 1)/2, b2/2, b3/2)

k 3 (b) = (b1/2, (b2 + 1)/2, b3/2)

k 4 (b) = ((b1 + 1)/2, (b2 + 1)/2, b3/2)

k 5 (b) = (b1/2, b2/2, (b3 + 1)/2)

k 6 (b) = ((b1 + 1)/2, b2/2, (b3 + 1)/2)

k 7 (b) = (b1/2, (b2 + 1)/2, (b3 + 1)/2)

k 8 (b) = ((b1 + 1)/2, (b2 + 1)/2, (b3 + 1)/2)

Prism. The subdivision of a prism works both for a static prism
domain and a dynamic triangle domain. In the latter case, the third
coordinate is time.

k 1 (b) = (b1/2, b2/2, b3/2)

k 2 (b) = ((b1 + 1)/2, b2/2, b3/2)

k 3 (b) = (b1/2, (b2 + 1)/2, b3/2)

k 4 (b) = ((1 − b1)/2, (1 − b2)/2, b3/2)

k 5 (b) = (b1/2, b2/2, (b3 + 1)/2)

k 6 (b) = ((b1 + 1)/2, b2/2, (b3 + 1)/2)

k 7 (b) = (b1/2, (b2 + 1)/2, (b3 + 1)/2)

k 8 (b) = ((1 − b1)/2, (1 − b2)/2, (b3 + 1)/2)

Hypercube. This is a 4-hypercube that works as a domain for a
dynamic hexahedral element.

k 1 (b, C) = (b1/2, b2/2, b3/2, C/2, C/2)

k 2 (b, C) = ((b1 + 1)/2, b2/2, b3/2, C/2, C/2)

k 3 (b, C) = (b1/2, (b2 + 1)/2, b3/2, C/2)

k 4 (b, C) = ((b1 + 1)/2, (b2 + 1)/2, b3/2, C/2)

k 5 (b, C) = (b1/2, b2/2, (b3 + 1)/2, C/2)

k 6 (b, C) = ((b1 + 1)/2, b2/2, (b3 + 1)/2, C/2)

k 7 (b, C) = (b1/2, (b2 + 1)/2, (b3 + 1)/2, C/2)

k 8 (b, C) = ((b1 + 1)/2, (b2 + 1)/2, (b3 + 1)/2, C/2)

k 9 (b, C) = (b1/2, b2/2, b3/2, C/2, (C + 1)/2)

k 10 (b, C) = ((b1 + 1)/2, b2/2, b3/2, C/2, (C + 1)/2)

k 11 (b, C) = (b1/2, (b2 + 1)/2, b3/2, (C + 1)/2)

k 12 (b, C) = ((b1 + 1)/2, (b2 + 1)/2, b3/2, (C + 1)/2)

k 13 (b, C) = (b1/2, b2/2, (b3 + 1)/2, (C + 1)/2)

k 14 (b, C) = ((b1 + 1)/2, b2/2, (b3 + 1)/2, (C + 1)/2)

k 15 (b, C) = (b1/2, (b2 + 1)/2, (b3 + 1)/2, (C + 1)/2)

k 16 (b, C) = ((b1 + 1)/2, (b2 + 1)/2, (b3 + 1)/2, (C + 1)/2)

Hyperprism 1. This is the tensor product of a tetrahedron with an interval
that works as a domain for a dynamic tetrahedral element.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

High-Order Continuous Geometrical Validity • 19

k 1 (b, C) = (b1/2, b2/2, b3/2, C/2)

k 2 (b, C) = ((b1 + 1)/2, b2/2, b3/2, C/2)

k 3 (b, C) = (b1/2, (b2 + 1)/2, b3/2, C/2)

k 4 (b, C) = (b1/2, b2/2, (b3 + 1)/2, C/2)

k 5 (b, C) = ((1 − b2 − b3)/2, b2/2, (b1 + b2 + b3)/2, C/2)

k 6 (b, C) = ((1 − b2)/2, (b1 + b2)/2, (b2 + b3)/2, C/2)

k 7 (b, C) = ((b1 + b2)/2, (1 − b1)/2, b3/2, C/2)

k 8 (b, C) = (b1/2, (b2 + b3)/2, (1 − b1 + b2)/2, C/2)

k 9 (b, C) = (b1/2, b2/2, b3/2, (C + 1)/2)

k 10 (b, C) = ((b1 + 1)/2, b2/2, b3/2, (C + 1)/2)

k 11 (b, C) = (b1/2, (b2 + 1)/2, b3/2, (C + 1)/2)

k 12 (b, C) = (b1/2, b2/2, (b3 + 1)/2, (C + 1)/2)

k 13 (b, C) = ((1 − b2 − b3)/2, b2/2, (b1 + b2 + b3)/2, (C + 1)/2)

k 14 (b, C) = ((1 − b2)/2, (b1 + b2)/2, (b2 + b3)/2, (C + 1)/2)

k 15 (b, C) = ((b1 + b2)/2, (1 − b1)/2, b3/2, (C + 1)/2)

k 16 (b, C) = (b1/2, (b2 + b3)/2, (1 − b1 + b2)/2, (C + 1)/2)

Hyperprism 2. This is the tensor product of a prism with an interval that
works as a domain for a dynamic prism element.

k 1 (b .C) = (b1/2, b2/2, b3/2, C/2)

k 2 (b .C) = ((b1 + 1)/2, b2/2, b3/2, C/2)

k 3 (b .C) = (b1/2, (b2 + 1)/2, b3/2, C/2)

k 4 (b .C) = ((1 − b1)/2, (1 − b2)/2, b3/2, C/2)

k 5 (b .C) = (b1/2, b2/2, (b3 + 1)/2, C/2)

k 6 (b .C) = ((b1 + 1)/2, b2/2, (b3 + 1)/2, C/2)

k 7 (b .C) = (b1/2, (b2 + 1)/2, (b3 + 1)/2, C/2)

k 8 (b .C) = ((1 − b1)/2, (1 − b2)/2, (b3 + 1)/2, C/2)

k 9 (b .C) = (b1/2, b2/2, b3/2, (C + 1)/2)

k 10 (b .C) = ((b1 + 1)/2, b2/2, b3/2, (C + 1)/2)

k 11 (b .C) = (b1/2, (b2 + 1)/2, b3/2, (C + 1)/2)

k 12 (b .C) = ((1 − b1)/2, (1 − b2)/2, b3/2, (C + 1)/2)

k 13 (b .C) = (b1/2, b2/2, (b3 + 1)/2, (C + 1)/2)

k 14 (b .C) = ((b1 + 1)/2, b2/2, (b3 + 1)/2, (C + 1)/2)

k 15 (b .C) = (b1/2, (b2 + 1)/2, (b3 + 1)/2, (C + 1)/2)

k 16 (b .C) = ((1 − b1)/2, (1 − b2)/2, (b3 + 1)/2, (C + 1)/2)

C INTERVAL ARITHMETIC
The interval type we use de�nes the following operations and relations:

−[G, G] = [−G, −G]

[G, G] + [~, ~] = [G + ~, G + ~]

[G, G] [~, ~] = [min(G~, G~, G~, G~),max(G~, G~, G~, G~)]

min([G, G], [~, ~]) = [min(G, ~),min(G, ~)]

max([G, G], [~, ~]) = [max(G, ~),max(G, ~)]

[G, G] = [~, ~] ⇔ G = ~ ∧ G = ~

[G, G] > [~, ~] ⇔ G > ~

The division between intervals should be avoided, as the divisor may
contain 0. However, a division of an interval by an exact number is acceptable;
in our code, we have only divisions by 2, which is however exact even in
�oating point.

Note that there is no total ordering of intervals, so for example, [G, G] ≰
0⇏ [G, G] > 0.

In our implementation, outward rounding is achieved by internally stor-
ing the lower end of the interval with the opposite sign and changing the
processor rounding mode to always rounding up. This ensures that the
interval’s width increases only when the actual �oating-point computation
is inexact.

D GROUND TRUTH
We designed a Mathematica script that computes symbolically the roots of
| �Ḡ | for a given element. The script receives in input the type, dimension =,
and order ? of an element together with the control points describing its
geometric map at times C = 0 and C = 1. This is the same input taken by our
test. The script computes the symbolic expression of | �Ḡ | , which is a polyno-
mial in = + 1 variables, �nds its roots inside the domain f̄ , and returns the
minimum value of C in which a root is found. First, we use FindInstance
to check if the region where � ≤ 0 is empty. If so, the element is valid
throughout; otherwise, we use Minimize to �nd the minimum time C in
such a region. The scripts will be released as part of our open-source code.

E FAILURE CASE FOR FLOATING POINT ALGORITHM
We present an arti�cial example where �oating point error causes an invalid
element to be detected as valid by the non-robust implementation of the
static validity check. Consider the static quadratic triangle with control
points:

v00 = (0.0, -1.0)

v20 = (0.9999999999999997, -1.0)

v02 = (-1.1093356479670479e-16, -3.3306690738754696e-16)

v01 = (0.5, -0.75)

v11 = (0.75, -0.25)

v10 = (0.25000000000000017, -0.5)

control points v00, v20, and v02 are the three vertices of the triangle, and v01,
v11, v10 are the edge midpoints. The value of the Jacobian determinant is
positive at all control points, except v00. At this point, the Jacobian is

�00 =(4v
G
01 − 3vG00 − v

G
20) (4v

~

10 − 3v
~

00 − v
~

02)−

(4vG10 − 3vG00 − v
G
02) (4v

~

01 − 3v
~

00 − v
~

20)

=-1.1093356479670467e-16 < 0

when computed with exact rational arithmetic. However, when tested with
the �oating point implementation, the Jacobian determinant at this ver-
tex evaluates to 2.220446049250313e-16 > 0; because all other Bézier
coe�cients are positive as well, the element is classi�ed as valid.

Our conservative implementation takes representation error into account
and does not converge for this element, meaning that the algorithm will
stop after ;max subdivisions leaving the element undecided, and thus it will
be treated as invalid.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

	Abstract
	1 Introduction
	2 Overview of the method
	3 Related work
	4 Preliminaries and notations
	4.1 Reference Element Domains
	4.2 High-Order Elements
	4.3 Minimum Inclusion Function
	4.4 Interval and Rational Arithmetic

	5 Continuous geometrical validity
	5.1 Continuous Validity Test

	6 Implementation
	6.1 Inclusion Functions for Space and Time
	6.2 Robust Computation
	6.3 Acceleration

	7 Application to simulation
	7.1 Continuous Validity in Simulation
	7.2 Invalidity-Aware Quadrature Rules

	8 Results
	8.1 Benchmark of filtered queries
	8.2 Comparisons
	8.3 Elastodynamic Simulation

	9 Conclusions
	Acknowledgments
	References
	A Langrange and Bézier forms of |Jx|
	B Subdivision rules
	C Interval arithmetic
	D Ground truth
	E Failure case for floating point algorithm

