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Fig. 1. Our shock-protecting microstructures are designed to provide a reaction force as close as possible to constant for a wide range of displacements.
We introduce a computational pipeline to design a microstructure family, and we validate its e�ectiveness in simulations and in physical experiments. Our
microstructures are able to protect irregular objects (le�) and be used for package wrapping (right), simulated in 2D.

Mechanical shock is a common occurrence in various settings, there are
two di�erent scenarios for shock protection: catastrophic protection (e.g. car
collisions and falls) and routine protection (e.g. shoe soles and mattresses).
The former protects against one-time events, the latter against periodic
shocks and loads. Common shock absorbers based on plasticity and frac-
turing materials are suitable for the former, while our focus is on the latter,
where elastic structures are useful. Further, we optimize the e�ective elastic
material properties which control the critical shock parameter, maximal
stress, with energy dissipation by viscous forces assumed adequate. Im-
proved elastic materials protecting against shock can be used in applications
such as automotive suspension, furniture like sofas and mattresses, landing
gear systems, etc. Materials o�ering optimal protection against shock have
a highly non-linear elastic response: their reaction force needs to be as close
as possible to constant with respect to deformation.

In this paper, we use shape optimization and topology search to design
2D families of microstructures approximating the ideal behavior across a
range of deformations, leading to superior shock protection. We present an
algorithmic pipeline for the optimal design of such families combining dif-
ferentiable nonlinear homogenization with self-contact and an optimization
algorithm. We validate the e�ectiveness of our advanced 2D designs by ex-
truding and fabricating them with 3D printing technologies and performing
material and drop testing.
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1 INTRODUCTION
Mechanical shock is an abrupt and large increase in the surface
force acting on an object, typically due to contact with an obstacle
or another object. The need for protection from periodic mechanical
shocks is common. For example, coil springs and leaf springs are ex-
tensively used in vehicle suspensions to provide a smoother ride and
absorb vibrations from the road, springs are used in robotics to act
as shock absorbers, allowing robots to move more smoothly while
reducing wear and tear on mechanical components, and in medical
devices like prosthetics and orthotics to absorb shocks during move-
ment. In our body, cartilage is a natural shock absorber essential
for our movement. In these cases, the shock happens periodically,
and the acting forces have a known limited set of directions and
magnitudes: the material must withstand multiple shocks, and it is
thus common to use materials in their elastic deformation regime
for these purposes. A plastic material would be unsuitable for these
purposes, as it will have to be replaced after every shock.

A simple model problem, representative of most practical settings,
is dropping a load with a layer of protective material on a rigid
surface. The protective material layer performs two functions: �rst,
it makes the deceleration of the object more uniform, reducing the
maximal force acting on the load, and second, it converts the kinetic
energy into elastic energy, partially dissipating it in the process. The
latter most commonly happens due to the damping/visco-elastic
properties of the protective material. The former function is critical,
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as it eliminates the shock; the latter is desirable, as it eliminates
oscillations and prevents bounces after the initial contact.

Minimization of maximal force/acceleration acting on the load
requires materials with unusual properties: the optimal behavior is
for the reaction force to remain constant as the protective material
deforms (Section 3.1), which is very di�erent from most common
materials where the reaction force increases with deformation, for
example in a spring. Materials with complex geometric structures
such as foams or corrugated cardboard are commonly used as pro-
tective materials because their behavior isessentially nonlinear1 and
closer to the ideal behavior of having a constant decceleration.

In this paper, we describe howshape optimizationfor periodic mi-
crostructures consisting of 2D repeating cells can produce families of
cell geometries with elastic response close to ideal over a large range
of deformations, using a single base material. With our approach, we
discover and present a family of optimized structures with ideal be-
havior up to 75% compression, leading to shock-absorbing materials
signi�cantly closer to the perfect �xed-force deceleration.

Our solution builds upon shape optimization algorithms for peri-
odic metamaterials (e.g. methods producing families of cell struc-
tures spanning a particular range of e�ective material properties), ex-
tending them to support the distinctive features of shock-absorbing
materials:

� The target constitutive law isessentially nonlinearand is not
approximated well by a standard model, the homogenization
must be performed in the nonlinear regime, sampling the
whole stress-strain curve, rather than using a low-parametric
model (e.g., captured by an elasticity tensor);

� Self-contactsigni�cantly impacts the structure behavior. The
deformations are large, and contact must thus be considered
in the shape optimization process;

� Large deformations require anon-linear elasticitymodel, and
an accurate constitutive law for the base material must be
used.

� Tile symmetry, which is a common feature of existing meta-
material families, is detrimental to shock absorption as it
leads to unstable branching during the deformation.

The paper shows a complete algorithmic pipeline to construct
nonlinear microstructure families parametrized by the target con-
stant stress and how to use them to realize shock-absorbing materi-
als. The contributions of our paper include the following:

� A novel family of single material shock-absorbing microstruc-
tures providing �at response curves to up to 75% compression
(the previous known structure [Joodaky 2020] has a �at re-
sponse up to 57%). The family is of independent interest from
our algorithmic contribution and can be used directly to de-
sign and 3D print shock absorbers.

� We formulate the equations for computing e�ective elastic
stress-strain dependence (homogenization) of nonlinear pe-
riodic structures with cells for large displacements in the
presence of contact and non-linear base material constitutive
law.

1This term is commonly used in the materials literature to indicate that a non-linear
material model is essential to capture the material's qualitative behavior.

� We use a combinatorial enumeration of 2D structures to
identify the best choices of structure topology for di�erent
regimes and obtain several families of cell structures with the
best performance for di�erent loads.

� We develop a gradient-based algorithm for shape optimiza-
tion to minimize the deviation of the e�ective stress-strain
dependence from the ideal constant-force behavior.

� We study the e�ect of tile symmetry and demonstrate that it
must be avoided in the presence of large deformation.

� We validate the desired behavior of the resulting lattices by
extensive experimental testing of fabricated lattice samples.

2 RELATED WORK
Microstructure design and optimization.There is an extensive

literature on microstructure design, see, e.g., the survey [Kadic et al.
2019] for extensive references.

A lot of work on the optimization of geometry in individual cells
is based on general shape and topology optimization methods [Al-
laire 2002; Bendsøe 1989; Bendsøe and Sigmund 2003]. Most of these
works are based on small-displacement and linear material assump-
tions that are fundamentally not applicable in our setting. There is an
increasing number of works considering nonlinear homogenization,
which we review below.

In computer graphics, families of microstructures of various types
were developed starting with [Panetta et al. 2015a; Schumacher et al.
2015; Zhu et al. 2017] with many more in studies in material science
and engineering. We use the approach of [Panetta et al. 2015a] for
our topology enumeration. Our nonlinear homogenization approach
is similar to [Chen et al. 2021], based on [Nakshatrala et al. 2013].

Recently, [Li et al. 2022] used topology optimization to design
microstructures to �t desired nonlinear stress-strain responses. They
were also able to optimize microstructures to have a �at response.
However, due to the limitation in topology optimization (Figure 23)
and absence of contact, they only consider moderate compression
of no more than 40% and a limited range of homogenized force (10N
to 30N).

[Zhang et al. 2023] introduces a shape-optimization method to
design microstructures modeled with a nearly isotropic response at
�nite strains. Collision avoidance is added to the objective function
leading to structures that do not intersect up to a compression of 10%.
The penalty does not handle contact, which unavoidably happens
for higher compression rates, making it unsuitable for designing
shock-absorbing materials.

A related and concurrent work [Li et al. 2023a] uses a neural
network to map structure parameters to di�erentiable strain energy
density, which is then used for inverse design. The model is trained
on simulations that use a nonlinear material model and accurate
contact modeling using the incremental potential contact model [Li
et al. 2020]. The approach relies on sampling densely the parameter
space and it is thus limited to a small number of parameters to
model the geometry (2 for most of their microstructure families,
with the larger family using 4). Instead of relying on a neural sur-
rogate, we use a di�erentiable simulator to optimize the shape of
the microstructures using parameterizations with up to 80 parame-
ters. In addition to periodic simulations as in [Li et al. 2023a], we
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perform full-simulation validation (in some cases, global e�ects are
signi�cant) as well as physical validation.

Shock-absorbing metamaterials.While the shock-absorbing prop-
erties of foams and structured materials were known for a long
time, the desirable properties of certain types of lattices became
known relatively recently. [Bunyan and Taw�ck 2019] describes the
j -shaped cells, which have �attened regions in their stress-strain
curves. This type of structure was further explored in [Joodaky
2020], which we consider as a baseline. [Chen et al. 2020] describes
a shell-lattice metamaterial that can absorb very large energies while
retaining a low density but does not attempt to optimize it.

Early work on designing shock-absorbing structured materials
[Kellas and Jackson 2010] investigated designs of deployable hon-
eycomb structures for crash energy management in light aircraft,
showing these are superior to airbags. [Leelavanichkul et al. 2010]
considered properties of a structure consisting of a helicoidal shell
enveloping a cylinder, motivated by hydraulic shock absorbers.
[Chen et al. 2018] describes a new hierarchical cellular structure cre-
ated by replacing cell walls in regular honeycombs with triangular
lattice con�gurations to improve energy absorption under uniax-
ial compression and shape integrity at high strains. [Matlack et al.
2016] described elastic metastructures with wide, low-frequency
band gaps while reducing global mass, with applications in con-
trolling structural vibrations, noise, and shock mitigation. These
structures, however, are not close to the ideal shock-protecting
structures we describe below.

[Mueller et al. 2019] analyzed the energy absorption properties of
various periodic metamaterials, comparing them to foam-like ran-
dom structures; while random structures exhibit better uniformity
of stress for varying strain, periodic lattice geometries outperform
their stochastic equivalents in terms of energy absorption in some
cases. We show that periodic structures can be optimized to have
high-stress uniformity. More recently, [Acanfora et al.2022] explores
maximizing energy absorption in shock absorbers while minimizing
thickness or mass to improve transportation safety. Their analysis
is restricted to six a priori chosen structures.

[Gongora et al. 2022] used a data-driven approach to infer the
acceleration in the impact test from the stress-strain curve. The
expensive transient simulation can be avoided with their approach
while sacri�cing some accuracy. However, they do not perform
shape optimizations to �nd the optimal structures for impact pro-
tection.

[Huang et al. 2024] presents a general-purpose di�erentiable elas-
todynamics solver, but does not speci�cally address the problem of
nonlinear inverse homogenization. This work demonstrates in Fig-
ure 13 an example of optimizing a structure composed of elements
similar to Figure 31 using the shape representation from [Panetta
et al. 2015a]. However, unlike other methods, they perform shape
optimization in transient drop test simulations directly to minimize
the ! 4-norm of the stress on the load, directly on the complete
structure without homogenization. Although this idea is straight-
forward, it su�ers from several issues: (1) The stress distribution in
transient simulations is very unstable and noisy both in space and
in time (Figure 19), leading to less meaningful shape gradients and
nonsmooth energy landscapes. (2) Transient full simulations are

much more expensive than periodic simulations, due to their large
number of degrees of freedom and small time step size, especially
when contact is considered. As a reference, compression of the6� 6
full microstructure in Figure 29 takes75min while the periodic2� 2
tile simulation takes3min. (3) The e�ectiveness of the optimized
structure is restricted to that speci�c scene. It is hard to generalize to
di�erent load magnitudes as in our coverage (Figure 12) or di�erent
base materials without losing e�ciency (Figure 30).

While some works do one or two parameter sweeps to identify
best-performing structures, we are not aware of any works that per-
formed structure optimization for shock absorption systematically.

We also brie�y mention several papers that use bistable structures
for shock absorption. In this case, the transition from one stable
mode to a second stable mode allows the structure to store energy
and yet be reversible, assuming no plastic deformation, as pointed
out in [Frenzel et al. 2016; Shan et al. 2015]. This type of structure
is suitable for protection against one-time shock (e.g., a fall), but
cannot protect from repeated shocks, as encountered in shipping
and transportation. Some examples of works of this type include [Ha
et al. 2018; Izard et al. 2017], which describe tetra-beam-plate cells
with snap-through behavior for large de�ections. [Cao et al. 2021]
surveys a variety of bistable structures with a focus on applications
to actuators, MEMS, and shock absorption. Most recently, [Jeon
et al. 2022] describes a realization of a common tilted-beam bistable
structure with liquid crystal elastomers (LCE), with viscoelastic
behavior improving energy absorption, and [Fancher et al. 2023]
proposes a biomimetic shock-absorbing mechanism inspired by the
bi-stable elongation behavior of a protein.

Nonlinear homogenization.Nonlinear homogenization of peri-
odic structures for large displacements/strains is a far more complex
problem than linear homogenization. In this case, the e�ective de-
pendence between stress and strain requires multiple simulations.
Even more fundamentally, for given boundary conditions for a peri-
odic cell, the solution may be non-unique, and the material behavior
may not even be fully captured by a local constitutive law. Nev-
ertheless, suitable approximations of e�ective stress-strain depen-
dencies were obtained under certain assumptions (e.g., [DeBotton
et al. 2006]). We consider a version of the problem, with the stress-
strain response for only one direction being of interest, which is
considerably simpler than the general problem. As we have men-
tioned above, our nonlinear homogenization approach is similar to
[Chen et al. 2021], based on [Nakshatrala et al. 2013], and used for
microstructure design using topology optimization in [Wang et al.
2014].

We note that more general techniques for nonlinear homoge-
nization were developed, but remain quite expensive. E.g, [Yvonnet
and He 2007] and [Schröder 2014] use reduced-order models for
homogenization obtained using proper orthogonal decomposition
(POD) to increase e�ciency. These methods are further extended
in [Fritzen and Kunc 2018], [Kunc and Fritzen 2019] and [Kunc
and Fritzen 2020], with a typical approach of �rst constructing a
reduced-order model, then sampling deformation space using this
model, and �nally interpolating the samples using various types of
interpolation.
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Fig. 2. Deformation and stress-strain curve of the microstructure proposed
in [Joodaky 2020]. Contact may happen in the region where stress does not
increase.

Several works use nonlinear, �nite strain homogenization in the
topology optimization context to obtain periodic metamaterials with
desired properties, starting with [Wang et al. 2014], which uses nu-
merical tests of response to a deformation, which can be considered
partial homogenization, in the context of truss-based and contin-
uum topology optimization. A more general case of homogenization
is [Behrou et al. 2021]. [Wallin and Tortorelli 2020a] describes how
non-linear homogenization based on the multiscale virtual power
method can be used in the context of topology optimization, with
sensitivities transferred from microscale to macroscale. While our
method is somewhat related to topology optimization methods as
we use an implicit shape representation described in [Panetta et al.
2017], unlike these techniques, it supports accurate di�erentiable
contact.

[Xue and Mao 2022a] uses a formulation for cellular metamate-
rial optimization for large deformations based on the shape map,
mapping a �xed reference con�guration to an optimized one. Our
method, while using an implicit shape representation, uses a similar
discretization at each step to compute the shape derivatives.

In computer graphics literature, bistable auxetic structures are de-
scribed in [Chen et al. 2021] and used for deployable surfaces; [Sperl
et al. 2020] simulates yarn-level cloth e�ects using nonlinear ho-
mogenization; [Schumacher et al. 2018] proposes a comprehensive
approach to characterizing the mechanical properties of structured
sheet materials with nonlinear homogenization and uses inverse
design to explore structures with desired properties.

[Zhang et al. 2023] proposes a collision penalty term to avoid
intersections in the deformed microstructures. Although it avoids
the expensive contact-aware simulation, it prevents any contact
throughout the simulation. As in Figure 2, contact may happen
in some optimal microstructures for shock protection, even in the
strain range where the stress does not increase.

3 METHOD

3.1 Background and problem formulation
We start with reviewing the problem setup (Figure 3) for measuring
the shock-protective properties of a material.

A (meta)material is typically characterized by the stress-strain
curvef ¹nº. Since a response to a one-dimensional load is of primary
interest to us, in the model setup we only consider one diagonal
component of the stress corresponding to vertical compression and
its dependence on the applied strain along the same direction. I.e.,
we consider curvef = f ¹nº, wheref is a scalar stress, andn is the
scalar strain.

Ideal shock-protective material.Suppose the kinetic energy of an
object is<E2•2 right before impact, where< is the object mass,Eis
its velocity. Let� be the area of contact with the protective material.
Ignoring gravity, the force acting on the object as the protective
material is compressed to strainn is � = �f ¹nº. The assumption
that the object stops for somen Ÿ 1, can be expressed as

��
¹ 1

0
f ¹nº3n > <E2•2•

where� is the protective layer thickness; i.e., that the work of the
elastic force over this thickness is larger than the kinetic energy
before contact. Here, we approximate the strain by modeling it as
constant over the thickness of the layer. While in reality there may
be considerable variation, this assumption is needed to obtain a
problem formulation independent of the protective layer thickness/-
geometry.

This leads to the following optimization problem for the "ideal"
stress-strain curve:

min
f

max
n

f ¹nº• subject to
¹ 1

0
f ¹nº3n > f 5•

wheref 5 = <E2•¹ 2�� º. It is easy to see that the optimal solution
is f ¹nº = f 5, as iff 6 f 5 everywhere on»0•1¼, the constraint can
only be satis�ed if the equality holds, and iff ¡ f 5 anywhere, this
choice off ¹nº is suboptimal, because the constantf is valid and
has a lower maximum.

Seemingly the ideal shock-protective material can only absorb
2� energy compared to a perfect linear elastic material with a linear
stress responsef ¹nº = �n . However, it's actually hard to �nd ma-
terials with perfect linear response at �nite strains, especially for
large compression: The recent work [Zhang et al. 2023] manages to
optimize microstructures to stay close to linear response up to 15%
strain, while we consider compression up to 75%.

Optimization problem.Such a �at response is not physically pos-
sible: whenn = 1 the reactive forces have to increase to in�nity;
similarly, close ton = 0, the reactive forces have to be close to zero.
So for any real (meta)-material, there is a ramp-up part of the curve,
a �at part, and a �nal part, corresponding to extreme compression.
This leads to the following optimization problem:

For a base material and a target value of stressf 5, optimize the
geometry of a unit cell so that the stress-strain curve for a metamaterial
obtained by periodically repeating it is as close as possible tof ¹nº = f 5.

Solving this problem yields a family of cell geometries parametrized
by the e�ective stressf 5. For each value off 5, we obtain a di�erent
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Fig. 3. Model problem setup.

geometry and, thus, a di�erent stress-strain curve with a large �at
region. We note that the size of the �at region is not uniform within
the family: our objective is to make it as large as possible for each
e�ective stress value.

To the best of our knowledge, such a family of materials has
never been studied before. As discussed in Section 2, examples of
geometries for speci�cf 5 have been reported, but not a complete
family covering a large range of stress values.

To illustrate how such a family of materials can be used, we
consider the following standard problem: given maximal allowed
deceleration� , and expected drop height� , choose the optimal
material in the family and required thickness. Conservatively, as-
suming that all deceleration happens at the �at part of the response
curve and approximating the strain by constant, we obtainf 5 from
the force balance<� = �f 5; note that this does not depend on the
thickness of the protective layer, and allows us to pick a material
already. For a speci�c material in the family corresponding tof 5,
we require that the work done by elastic forces on the �at part of
the stress-strain curve is su�cient to absorb the kinetic energy, i.e.
(approximately)U¹f 5ºf 5 = <6�

� from which thickness� can be
estimated.

3.2 Approach overview
We obtain the families of protective metamaterials using a com-
bination of combinatorial enumeration of topologies and shape
optimization. The main components of our algorithm include:

� Topology enumeration and geometric parametrization
(Section 3.3).The topology of our cells is de�ned by a graph
within the cell, with geometric parameters given by radii
at graph nodes and blend parameters, as shown in Figure 4.
The outer loop of the overall algorithm enumerates di�erent
possible topologies.

� Nonlinear di�erentiable homogenization (Section 3.4).
The objective of our optimization is the deviation of the stress-
strain curvef ¹nº from a constantf 5. To obtain the e�ective
stressf ¹nº, we use periodic nonlinear homogenization with
contact, obtaining e�ective stresses for a set of background
deformationsn. Contact is of particular importance in our
setting as the material is designed speci�cally for very large
deformations. Along with computing e�ective stresses, we
compute their gradients with respect to shape parameters,
which are essential for e�cient optimization.

� Objective and optimization (Section 3.5). For every topol-
ogy and a target �at stress valuef 5, we optimize the shape

 Inflator

Fig. 4. A cell topology) is annotated with geometric parametersA(a radius
and a 2D position for each vertex). The inflator	 converts the graph repre-
sentation into an implicit function, which is then triangulated to obtain a
mesh representation�@of the cell domain
 .

to minimize the deviation of e�ective stress fromf 5, com-
puted via homogenization, for strains sampled at a �xed set
of strainsn8.

Nonlinear di�erentiable homogenization is the core part of the al-
gorithm; we discuss it in detail after brie�y reviewing topology
enumeration, starting with the forward simulation and then ex-
plaining how the derivatives can be computed.

3.3 Topology enumeration and geometric parametrization
We use the graph representation introduced in [Panetta et al. 2015a]
to represent our periodic cells and the implicit surface de�nition
proposed in [Panetta et al. 2017], which we brie�y review here.

Cell parametrization and graph in�ator.Each microstructure is
parametrized by a graph) , annotated with a radius and a position
for every graph node (stacked in a single vector of parametersA),
embedded in a rectangle of size0� 1. [Panetta et al. 2017] de�nes an
implicit surface that "in�ates" the graph based on the radii assigned
to its vertices; a periodic triangular mesh of the domain
 is then
obtained from the implicit function using marching squares. The
map from the parametersAand cell dimensions0,1 to the vector of
periodic vertex positions�q is denoted

�q = 	 ) ¹A• 0•1º”

The derivatives of the vertex positions in this mesh with respect
to shape parameters (i.e. the shape velocities) are computed using
implicit function di�erentiation ([Panetta et al. 2017]).

Design space.The design space of the shape consists of three
parts: combinatorial choice of the graph) , microstructure shape
parametersA, and the size of unit cell0, 1. We �x 1 = 1 since uni-
form scaling of the cell uniformly does not a�ect the homogenized
properties. However, the ratio between the width and length of the
cell a�ects the stress-strain curve as in Figure 5 (even for linear
elasticity).

For the choice of topology, we consider 105 patterns in 2D fol-
lowing [Panetta et al. 2015b], generated by enumeration of patterns
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Fig. 5. Ratio between the width and length of the unit cell a�ects the stress-
strain curve. Di�erent curves are not simply the same up to a constant
scaling factor due to nonlinearity.

with bounded number over vertices in the cell and number of edges
meeting at a vertex. In the optimization, we �rst generate the mesh
in the unit square based on the graph and its parameters. Then,
we scale the shape by the scale parameters to get the unit cell in a
rectangle.

3.4 Nonlinear homogenization
A periodic metamaterial consists of repeating cells with identical
geometry�q = 	 ¹A• 0•1º, parametrized by the shape parametersA
and cell dimensions. The e�ective (homogenized) properties of the
material are obtained in the limit of cells repeated in�nitely, and
deformations are considered at a scale much larger than the cell
size; in this case, we can assume that the metamaterial behaves as
a homogeneous solid material, with an e�ective constitutive law,
relating stress to strain at each point. This stress-strain dependence
can be obtained from the constitutive law of the base material and
cell geometry byhomogenization.

While for our problem the dynamic behavior of the material may
be important we considerstaticdeformations only in our optimiza-
tion, which captures the most signi�cant aspects of the behavior of
highly absorbing materials. We do not include dissipation in our sim-
ulation as it does not a�ect the e�ectiveness of protection (Figure 17).
We also assume negligible plasticity which is a valid assumption
for materials chosen to provide protection from repeated shock.
The deformation of the metamaterial can be decomposed into a
slow-changing deformation, that can be computed from the (a priori
unknown) macroscopic constitutive law, and a cell-scale �uctua-
tion. At a level of a single cell, macroscopic stress and strain can be
viewed as constant, i.e., corresponding to a linear deformation of the
cell, with a periodic cell �uctuation~Dadded on top. Homogenization
assumes that there is a constant macroscopic strain, equivalently,
a linear deformation�G whereGis the spatial coordinate (test de-
formation), solves for the periodic �uctuation~Dand computes the
resulting e�ective stress.

For small displacements, a linear e�ective constitutive lawf = �n
can be assumed, fully determined by components of an e�ective
elasticity tensor, which considerably simpli�es the problem: the
elasticity tensor can be fully inferred from a small number of test

deformations. However, the materials we aim to construct are in-
herently nonlinear (Figure 29). In this case, to approximate the
e�ective stress-strain dependence, we must compute the e�ective
stress resulting from a larger set of �nite deformations. The need for
sampling for our problem is considerably reduced by considering
only stress-strain dependence for a single direction.

Notation.We useGto denote the coordinate on the periodic cell

 � + , where+ is a rectangular tiling with tiles of size0� 1. We use
D¹Gº = ~D¹Gº ¸ �G to denote the solution of the elasticity equations
with contact, where~Dis the periodic �uctuation part and�G is the
macroscopic linear deformation part, with� 2 R2� 2. We restrict
matrices� to be symmetric to eliminate rotational components of
the deformation, which do not a�ect elastic behavior. The domain

 is discretized into a periodic triangular mesh.

The vector of coe�cients of ~D¹Gº in a FE basisq8 is denoted~u
(we use quadratic elements); this vector includes degrees of freedom
only, i.e., the periodicity conditions onu are used to exclude values
on the right and upper boundaries of+ .

We denote the vertices of this meshG8, with the vector of vertices
of size# denotedx. These are determined by the shape parameters
Aas described above. We use piecewise-linear basisb8 to represent
changes in the mesh as the shape parameters are varied. For the
discrete solutionu, the following equation holds:

u = ~u ¸ x� ) • (1)

where ~u is the discretization of the �uctuation. As explained below,
the variables in the elasticity equations we solve to compute the ho-
mogenized stress-strain dependence areu and components� 00• � 01

of the deformation matrix� . We denote the vector of all of these
variablesv = »~u;� 00• � 01¼.

Sampling e�ective stress.As our focus is on response to loads in a
single direction, we sample a single diagonal component of the stress
tensor corresponding to vertical deformation, and how it relates to
the component of the macroscopic deformation� in the vertical
direction. This yields a sampled approximation of a stress-strain
curve. In other words, the result of our homogenization procedure
is a set of samplesf ¹n8º approximating the dependencef ¹nº.

For each sample value of� 11 = n, we set up a nonlinear elasticity
problem to determine corresponding stress. We assume that the ma-
terial is free to deform in other directions; for this reason, we include
the components� 00 and� 01 as variables in our optimization:

min
~u• �

, ¹ ~u• � º such that� 11 = n• (2)

where, := , 4 ¸ , 2 is the sum of elastic (Equation 4) and contact
barrier energy (Equation 5 in [Li et al. 2023b]). The e�ective stress
tensor corresponding ton can be computed as

�f ¹nº :=
1

j+ j

¹



f ¹r G~D¸ � º3G• (3)

where j+ j is the area of+ in 2D.

Elasticity.The elastic energy has the form

, 4 :=
¹



F4¹r G~D¸ � º3G• (4)
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Fig. 6. A deformed periodic cell collides with its tiled boundary mesh during
homogenization. Accounting for collision is crucial to designing a shock-
protecting microstructure family (Figure 24).

whereF4 : R2� 2 ! R is the Neo-Hookean energy density function

F4¹� � � º :=
`
2

¹Tr»� � ) ¼ �2 � 2 log¹det� ºº ¸
_
2

log2¹det� º•

where� is the deformation gradient,_ and` are the Lamé parame-
ters. To solve(2)the Jacobian and Hessian of the elastic energy are
needed to solve the elasticity equation. The gradient and Hessian of
the elastic energy with respect to� are:

f := r F4 2 R2� 2• � := r 2F4 2 R2� 2� 2� 2”

Then we have the following expressions for the components of the
gradient and Hessian:

mu8, 4 =
¹



f ¹r Dº : r q83G mu8•u9, 4 =

¹



r q8 : � ¹r Dº : r q93G•

where8• 9= 1• ” ” ” • #. The �rst and second derivatives of, 4 with
respect toEare obtained by applying the chain rule of Equation 1.

Periodic contact.To adapt IPC [Li et al. 2020] to the periodic
homogenization, we need to consider contact inside the periodic
cell and between geometry from adjacent cells. We assume that we
do not need to consider contact between geometry in cells that are
not adjacent: although this may theoretically happen, we have not
observed this even for extreme deformations. To handle contact,
we use a2 � 2 tiling of the deformed periodic cell in the collision
detection and barrier energy computation. We observe that due to
periodicity, it is su�cient to consider neighbors only below and to
the left of a given cell, not above and to the right.

Figure 6 shows how the tiled boundary mesh of a deformed peri-
odic cell is used to detect collisions between cells.

De�ne uCas the vector of displacements on the2 � 2 tile. In the
two-by-two tiling of copies of the periodic domain+ , the coordinates
of vertices of three tiles are given byx8¸ 0e1• x8¸ 1e2• x8¸ 0e1 ¸ 1e2,
wheree3 (3 = 1•2) is the unit vector along3-th axis. We concatenate
these along with the original domain degrees of freedom into a
vectorxCof size" . The index mapping� , maps vertex9on the tiled
mesh to the corresponding vertex� ¹9º on the original mesh. The
displacement on the tiled meshuC 2 R" � 2 can be represented as

uC
9 = ~u� ¹ 9º ¸ � xC

9• (5)

whereGC
9 is the position of vertex9on the tiled mesh. The Jacobian

and Hessian of the barrier energy with respect toDCare identical to

Vertical load Rotated load

(A) (B) (C)(A) (B)

Fig. 7. Homogenizations with both vertical and rotated loads. The rest shape
(A) and its compression (B) under vertical load are shown on the le�. For
rotated loads on the right, instead of changing the force direction as in (A),
we rotate the rest shape instead in (B). The compressed shape is shown in
(C).

the ones used in [Li et al. 2020]. We apply the chain rule based on
(5) to obtain the Jacobian and Hessian with respect tov:

3v, 2 = ¹3uC, 2º¹3vuCº

32
v, 2 = ¹3vuCº) ¹32

uC, 2º3vuC•

where, 2 is the contact barrier potential,3vuC is the gradient of the
linear mapping in Equation 5. Entries of3vuCcan be computed by

m~u83uC
9: = X3: X� ¹ 9º•8 8= 1• ” ” ” • #; 9= 1• ” ” ” • "; 3• : = 1•2

m� 3? uC
9: = X3: xC

9? 9= 1• ” ” ” • "; 3• ?• : = 1•2
(6)

whereX8 9is the Kronecker delta.

Non-uniaxial Load.We also consider non-uniaxial loads in the
nonlinear homogenization to protect shocks in di�erent directions.
Similar to the problem (2), instead of �xing� 11, one can �x the
compression strain in the load direction, which becomes a linear
equality constraint. To avoid enforcing such constraints, we rotate
the shape instead so that the resulting load is still in the Y direction
(Figure 7). In this way, we do not need to change the formulation
of the homogenization but only need to consider the in�uence of
the rotation in the shape derivatives. In our experiments, we study
perturbations around the Y direction between� 15� to 15� .

Tile Symmetry.We note that we do not enforce rotation and
re�ectional symmetry on the cell geometry during optimization.
This is in contrast with most two-scale microstructure design works
(such as [Li et al. 2022; Zhang et al. 2023]), which use symmetry as
a natural way to reduce the parameter space.

As we show in Figure 28, symmetric tiles are problematic for large
strains (over 10 % compression), as they can buckle symmetrically,
leading to di�erent deformed geometries in each tile, which can
lead to large di�erences between the homogenized result and the
full-scale simulation of a tiling.

We experimentally discovered that removing the symmetry con-
straints is su�cient to obtain asymmetric deformations consistent
with the homogenized results, which do not su�er from this issue.
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Fig. 8. Each microstructure topology is initialized with a default set of
positions and radii for each vertex. Before optimization (le�) the stress (Pa)
- strain curve is far from flat; a�er optimization (right) the curve is flat over
a large range of deformation.

3.5 Objective and optimization algorithm
Objective.Given a target scalar stressf 5 ¡ 0, the goal of the

optimization is to minimize the deviation of the e�ective stress
from f 5 on the compression strain range of»10%• n¼, wheren Ÿ 1
is the max compression strain we consider. We initializen = 25%
in the �rst optimization and gradually increase it in the following
optimizations until it cannot be reached.

In every optimization, the forward simulation is solved on a series
of scalar compression strainsn8 (8= 0•1• ” ” ”) uniformly sampled in
the interval »10%• n¼(with stride 5%), the corresponding homoge-
nized stress and macro strain are�f 8 and� 8, the objective is

� ¹qº :=
Õ

8

¹
�f 8¹1•1º

f � � 1º2 ¸ F ¹j� 01
8 j2 ¸ j � 00

8 j2º• (7)

wheref � is the target homogenized stress, andq = ¹A• 0•1º are the
shape parameters and the size of the cell. The second term penalizes
shear and horizontal deformation under compression (essentially
forcing the Poisson's ratio to be nearly0), we pickF = 50in the
optimizations. We refer to Section 4.8 for a discussion on why shear
or horizontal deformations are highly undesirable in our setting.
Figure 8 shows an example of how the stress-strain curve changes
after the optimization and how the geometry of the microstructure
tile changes.

Algorithm. We provide the pseudocode of our complete optimiza-
tion and simulation algorithms in Appendix B, and we will release
a reference open-source implementation of our algorithm.

In rare cases, Newton's method converges to a saddle point in-
stead of a local minimum. Saddle points of the elastic energy are
normally physically undesired since they are unstable in reality
and may switch to a local minimum under small perturbations. In
this case, we drop the saddle point solution and rerun the simu-
lation with a small initial perturbation. Note that as discussed in
Appendix B, it rarely falls into a saddle point with our proposed
method.

Incremental load.We use the incremental load method [Ogden
1992] for forward simulations. However, enforcing high compres-
sion strain on an arbitrary structure may result in high contact
forces, causing convergence issues in IPC, so we optimize every
structure incrementally: We �rst optimize the shape so that its ho-
mogenized stress reaches the target in the strain range»10%•25%¼,

then increase the max strain by5%at a time and use the previously
optimized shape as the initial guess.

As shown in Figure 9, the deformation of some microstructures
cannot be fully captured by simulations on a single periodic cell
since the deformation in the microstructure is not periodic in terms
of every single cell. This behavior also happens in other microstruc-
tures as studied in [Bertoldi et al. 2010; Xue and Mao 2022b]. To
avoid the inconsistency caused by this behavior, we perform opti-
mizations using the homogenization on2 � 2 tiles.

Rest

Deformed

Fig. 9. Homogenization on a single cell fails to capture the behavior in full
simulations. From le� to right: homogenization on a single cell, homoge-
nization on a2 � 2 tile, full simulation without periodicity.

Figure 10 shows three examples of how the objective and its
gradient reduce in the shape optimization. Since our goal is to reduce
the objective until the homogenized stress is close enough to the
target, for better e�ciency, we stop the optimization when the point-
wise error is smaller than the threshold (5%), even if the gradient is
not small enough. Still, the gradient norm reduces by over 3 orders
of magnitude in the optimization, which is plenty considering the
di�cult contact simulations.

Warm start.When optimizing the shapes of the same topology
for di�erent homogenized stresses (Figure 12), one can use the
optimized shape with homogenized stressf 1 to generate the initial
guess shape for the optimization towards homogenized stressf 2.
However, notice that in Figure 5, the aspect ratio of the unit cell
changes the scale of the stress curve and does not change the overall
behavior much. Inspired by this, once the optimized shape atf 1
is obtained, we �rst minimize Equation 7 by only optimizing the
aspect ratio1•0, then perform the full shape optimization to further
minimize the objective. Note that the dependence of�f on1•0 is not
linear, e.g. in Figure 5 the curve of1•0 = 2 is around2� of 1•0 = 1
and6� of 1•0 = 0”5.

3.6 Shape derivatives
We optimize Objective(7)of Section 3.5 (Objective ¹q• ~u• � º in the
pseudocode) with respect to the microstructure cell parameters
q = ¹A• 0•1º. We will overload the notation (whenever the derivation
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Fig. 10. The objective and gradient plots for the shape optimizations (bot-
tom). On the top from le� to right: Initial rest shape, initial deformed shape,
optimized rest shape, optimized deformed shape.

is generic) and useq to refer to the independent vertex positions
�q = 	 ¹Aº de�ning domain 
 (we eliminate a subset of boundary
vertices due to periodicity) or to the cell dimensions~q = ¹0•1º.

As the cell scale is typically determined by fabrication constraints
we can use box constraints to keep one of the scale dimensions close
to the desired size. Shape parameters (graph vertex positions and
radii) determine vertex positions, as described in Section 3.3.

The derivatives of the objective� with respect to the shape pa-
rameters are computed using the adjoint method, with which the
shape derivatives can be obtained by solving a single additional
linear equation, and then evaluating an expression depending on
this unknown. See Appendix A for the derivation of the adjoint
method. Due to the periodic boundary condition, extra variable� in
the simulations, and the periodic contact, [Huang et al. 2024] cannot
be applied trivially to our case. We summarize the extra adjoint
terms below.

Shape derivative of elastic forcemqmv, 4. Since the elastic energy
is in the form of an integral over the domain:

, 4 =
¹



F4¹r ~D¸ � º3G•

we can �rst compute the shape derivatives with respect to all vertices
in x, then apply the chain rule ofq ! x,

mxmv, 4 = mx ¹mu, 4mvuº

= ¹mxmu, 4ºmvu ¸ mu, 4¹mxmvuº•

wheremxmvu can be obtained by di�erentiating Equation 1, and for
mxmu, 4 we follow the derivation in [Huang et al. 2024], here we
only write down the �nal formula. Recall thatb8 is the linear basis

used to represent the change of the rest mesh, then

mx8mD9, 4 = mx8

¹



f : r q93G

=
¹



� f r b)

8 : r q9 � r q9 : � : r Dr b8 ¸ ¹ f : r q9ºr � b8”

Shape derivative of contact forcemqmv, 2. The periodic contact
force can be considered as a function of vertices of the tiled mesh,
we follow [Huang et al. 2024] to compute the derivatives of the
contact force with respect to vertex positions on the tiled mesh,
then apply the chain rule to the mapq ! xC, which we discuss
below.

For every vertex9on the tiled mesh, its position can be written
as

xC
9 = �q� ¹ 9º ¸ ~q)

�
U9 0
0 V9

�
for someU9• V9 2 f0•1g• (8)

where ¹U9• V9º are indices of the tile to which the vertex belongs,
i.e., shifts by0 or 1 the components of the scale part ofq. To recall,
� ¹9º maps the index of vertices on the tiled mesh back to the index
of vertices on the single-cell mesh. Then

m�q8mv, 2 = m�q8¹muC, 2 mvuCº

= muC, 2 m�q8mvuC¸ m�q8muC, 2 mvuC

= muC, 2 m�q8mvuC¸ ¹
Õ

� ¹ 9º=8

mGC
9
muC, 2ºmvuC

m~qmv, 2 = m~q¹muC, 2 mvuCº

= muC, 2 m~qmvuC¸ m~qmuC, 2 mvuC

= muC, 2 m~qmvuC¸ ¹
Õ

9

�
U9 0
0 V9

�
mxC

9
mv, 2ºmvuC”

The gradient with respect toq can then be obtained by applying
the chain rule to the mapq ! » �q• ~q¼. In the above equations, the
terms we have not discussed yet arem�q8mvuCandm~qmvuC, which can
be computed by combining Equations (6) and (8).

Derivatives of e�ective stressmq� • mv � . To compute derivatives of
Equation 7 with respect toq andv, the only di�culty is in

�f 11 =
1

j+ j

¹



f 11¹r ~D¸ � º3G”

Similar to the elastic force, it is also in the form of an integral of the
stress tensor over the unit cell domain, except that the gradient of the
basis function is replaced by identity, so one can derive derivatives
following the derivation for elastic forces.

4 EVALUATION
We implemented our algorithm in C++ and used Eigen [Guennebaud
et al. 2010] for the linear algebra routines, a modi�ed version of
PolyFEM [Schneider et al. 2019] for �nite element simulation, tri-
angle [Shewchuk 2005] for meshing, and Pardiso [Alappat et al.
2020; Bollhöfer et al. 2019, 2020] for solving linear systems. All our
experiments are run on cluster nodes with an Intel Cascade Lake
Platinum 8268 processor limited to 16 threads.

We �rst show the coverage of our microstructure family in the
space of (strain, stress) pairs: a point¹f 5• nº is considered covered if
for strainn the actual response of the microstructure in the family
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Fig. 11. Statistics of optimizations: Number of shape parameters (top le�),
total time of the optimizations for each pa�ern and each target stress (top
right), number of iterations for each pa�ern and each target stress (bo�om
le�), and number of elements in the simulation (bo�om right).

corresponding tof 5 does not deviate fromf 5 by more than 10%. We
show representative examples of shock-protecting lattices, which
are fabricated using a Prusa Mk3s printer in TPU (sample size 10cm
tall, 2.6cm thick) and physically tested under compression using an
INSTRON 5966 Mechanical universal testing machine (Section 4.1).
We limit the physical validation to a subset of our microstructure
topology due to the time required for each test (~24 hours printing
time per sample). We also provide a comparison against the closest
known shock-absorbing microstructure (Section 4.5), and conclude
the evaluation with ablations (Section 4.8) for the use of a non-
linear material model, of a contact model, and for restricting the
homogenization to a single axis.

4.1 Microstructure family
To �nd the material coverage of a microstructure topology, we select
19 homogenized stress targets (from 75 to 75kPa) and run our in-
cremental optimization to �nd parameters for a �at response curve
for 11 di�erent compressive deformations (from 25% to 75%). We
simulate on a base material with Young's modulus106 Paand Pois-
son's ratio0”3, but the behavior of our optimized microstructures
is not a�ected much by the choice of base material (Figure 30). We
ran this procedure for 106 topologies, which took 1 week with 200
CPUs (on average 25min for each optimization) and a maximum
memory of 30GB (Figure 11). Then we �ltered the curve to �nd a
subset of 5 providing a good coverage (Figure 12). We show the
initial guesses, periodic deformations, and physical validations of
our optimized microstructures in Appendix E. Once the coverage is
obtained, one can adapt to di�erent material models or other vari-
ants easily by running optimizations with our optimized structures
as initial guesses.

Compression tests.We validate our microstructure family by cre-
ating a rectangular object tiled with a grid of cells and performing

(B)(A) (C) (D) (E)

A

B

C
D

E
Strain (%)
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E�ective Stress (N)
102 103 104 105

Fig. 12. For each target stress value, we plot the maximal possible strain for
which the structures' homogenized stress equals the target. The 5 shown
topologies (and their coverage) are selected from a total of 106 topologies
to maximize their coverage while providing a compact representation.

a compression test. We perform the compression test virtually (cre-
ating a single triangular mesh of the entire object, and simulating it
using PolyFEM, using a Neo-Hookean material model, backward
Euler time integration, and with contact) and physically, using a
universal testing machine. The grid size is the largest possible sat-
isfying the minimal wall thickness of our 3D printer, which is 15
cm. We show the optimized structures and their compression ex-
periments in Figure 37. Figure 1 shows a representative example of
three families in our coverage: the virtual compression tests show a
good agreement with our homogenized target, and the physical ex-
periments con�rm that our physical models are correctly modeling
the real-world deformation of an isotropic base material (we used
thermoplastic polyurethane for this experiment).

We note that the �at region of force-displacement curves in the
compression tests is not as wide as in the periodic homogenization,
because in most examples the top and bottom rows are restricted
by the planks, so not able to deform as the periodic cells. The �at
region can be widened by stacking more rows, but our fabrication
is limited by the wall size of our 3D printer.

Although the simulation results match the experimental results,
the force curves are not a perfect match. The thin beams in most
of the microstructures consist of 1 to 2 layers of material, and the
printing accuracy is the likely cause of the mismatch.

The geometric variations within a single family are subtle (Figure
13), but lead to very di�erent response curves. Physical validation
results are in line with our computational predictions, with a close
match on the response curve, despite pushing the resolution of our
3D printer to the limit (many features in our printed sample use
only one or two lines of plastic due to resolution limitations of FDM
printing).
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Fig. 13. The unit cell proposed in [Joodaky 2020], parametrized by our shape
parameters and then optimized for di�erent e�ective stresses. We show the
rest shapes, compressed shapes, and the force - strain curves of experimental
data (blue) and periodic simulation scaled by the dimension of the printed
model (orange).

4.2 Stability
The ideal microstructure with a �at stress response may be com-
pressed to di�erent strains under the same amount of force (Fig-
ure 37) since the cells are designed to exhibit the same amount of
homogenized stress for a wide range of strains. However, this does
not a�ect the overall force of the microstructure or the e�ectiveness
of shock protection, since the rows exhibit the same amounts of force
as long as the strains are on the plateau of the stress-strain curve
(which starts as small as 5% for most of our optimized structures).

To study the reason why di�erent rows collapse at di�erent
speeds, we simulate the compression of a unit-size block with square
�nite elements and a hypothetical constitutive model that exhibits
linearly increasing stress at small strains and almost constant stress
(with small oscillations) at larger strains (Figure 15). The compres-
sion force in the simulation matches with the analytic stress at
small strains (<10%) when the stress is monotonically increasing,
and matches closely overall but does not capture the exact oscil-
lations in the analytic stress. In fact, although di�erent rows are

(A) Vertical (C) Rotated(B) Solid
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Fig. 14. Drop tests with protecting materials stitched to the bo�om of
the object.(A) Drop vertically with the optimized microstructure a�ached.
(B) Drop with a solid material of the same dimension as (A), with smaller
Young's modulus so that it compresses by the same distance.(C) Drop at
an angle with the same load and microstructure, with more columns on
the le� to reduce tilting. In the acceleration - time plot (bo�om le�), the
maximal acceleration of (A) is around half of (B); the stress-strain curves of
this optimized pa�ern under loads in di�erent angles in homogenizations
are shown (bo�om right).

at di�erent strains, their compression forces have to be almost the
same, as explained in Appendix C, so the overall force does not
exhibit the oscillations but is closer to a constant response. In our
case, although the periodic stress-strain curves do not have periodic
oscillations, other errors in microstructure geometry and fabrication
may have a similar in�uence.

This does not mean that either the periodic or transient full simu-
lations are unstable. Suppose stress-driven homogenization is used,
then the compression at di�erent strains with the same homoge-
nized stress are all solutions to the simulation, leading to singular
systems in the forward simulation where Newton's method may
fail to converge quadratically and the adjoint method may fail to
compute the shape derivatives (the assumption that the Hessian is
invertible no longer holds). For this reason, we perform strain-driven
homogenization (Equation 3) instead, so that the only solution is
the deformation at the �xed strain. In this case, in the forward
simulation, the Hessian at the minima is positive de�nite and not
ill-conditioned: As shown in Figure 16, the condition number at the
deformed state does not increase signi�cantly in the course of the
shape optimization, showing that the simulation of the periodic cell
with an ideal response remains stable. The condition number at 10%
�25% strain is not signi�cantly larger than at 0% strain (rest shape),
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Fig. 15. Compression simulation with a hypothetical constitutive model.
Top: Simulation results of compressing a unit-size block, the color shows
jacobian of deformed square cells. Bo�om: Force-strain plot of the analytic
stress (orange) and simulation data (blue).
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Fig. 16. Plot of the condition number of the Hessian matrix during the
shape optimization of the topology (E) in Figure 12. Each curve shows how
the condition number at a fixed strain changes in the course of the shape
optimization.

showing that the deformation at the �at response region is not ill-
conditioned. As a consequence, the Newton's method converges
quadratically and the adjoint method works. The reason why tran-
sient simulations are stable is more obvious � the inertia guarantees
that the energy is locally strictly convex as long as the time step is
reasonably small.

Further, in the strain-driven homogenizations, even if the stress-
strain curve goes below zero, i.e. the microstructure is bistable
around that point, the energy is still strictly convex around the
minima and Newton's method can converge as expected, allowing
us to optimize for bistability of microstructures (Figure 31).

4.3 Drop tests
Baseline Comparison.To evaluate the use of our approach to

design protective gears or packaging protection, we run simulated
drop test experiments, where the microstructure is attached to the
falling object (Figure 14). We observe that the �at response of our
structure leads to slower deceleration of the load. In contrast to
shock protectors relying on plastic material [Acanfora et al. 2022],
our structure returns to its rest state after impact, making it reusable.

Rotated Load.To evaluate the e�ectiveness of the optimized struc-
tures under shocks in perturbed directions, we pick one topology,
perturb the load direction by15� , and optimize the stress-strain

(A) No damping (B) Low damping (C) High damping

No damping
Low damping
High damping

Acceleration (m/s�)

Time (s)
0.0 0.2 0.6 0.8 1.0

0

20
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Fig. 17. Drop tests with damping and same setup as in Figure 14 (A).(A)
k = q = 0, (B) k = q = 0”5, (C) k = q = 5

curves to be constant in both the vertical direction and the per-
turbed direction. We then simulate the drop test (Figure 14) with a
vertical load and a load rotated by15� , with the same density (Figure
14). The experiment shows that our structures can be optimized
for multiple load directions: The stress-strain plot shows that the
rotated drop has only a slightly higher acceleration than the vertical
one.

Visco-elasticity.To analyze the in�uence due to visco-elasticity,
we add the strain-rate proportional damping from [Brown et al.
2018] into our transient simulations. We observe that its e�ect is
negligible: the maximal acceleration with and without damping is
similar (Figure 17). The oscillations of the curves are reduced as
expected, which is a positive side e�ect but not our goal. We thus
opted not to include the dynamics e�ects, and as a consequence,
visco-elasticity in the optimization, as it has a negligible e�ect on
maximal acceleration and a high computational cost [Huang et al.
2024].

4.4 Package protection
A natural application of our microstructures is package protection.
We pick the optimized shape in Figure 14, which can protect from
shocks in multiple directions. We then generate a quadrilateral mesh
covering the object and map the unit cell to every quadrilateral to
form a protective shell (Figures 1 and 18). As shown in Figure 19,
from the initial geometry to the optimized microstructure, the maxi-
mum stress on the object is reduced from1”2� 105 Pato 3”4� 104 Pa.
To make a fair comparison, the density of the microstructure is
much lower than the duck so that the total load is not a�ected by
the microstructure in�ll volume ratio.

4.5 Baseline comparisons
We compare with the state-of-the-art structure proposed in [Joodaky
2020]. This extendedj -shaped structure has been discovered by
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Fig. 18. A duck falls down the slope with un-optimized microstructures as
protecting material. The Von Mises stress distribution is shown, same color
scale applies to Figure 1.

Time Time
(b) Initial Microstructure(a) Optimized Microstructure

Stress (x10� kPa)

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Fig. 19. Max Von Mises stress plots of Figures 1 and 18. The maximum stress
is reduced by 72% by optimizing the protecting microstructures.

manual design of its topology. In Figure 20, we show that our opti-
mization approach can modify its e�ective stress value by optimizing
geometric parameters and obtaining a wider range of strain with a
constant e�ective stress value. Additionally, our extensive search
of 105 topologies led to connectivities that can achieve higher com-
pression with a �at response, extending the 55% of the baseline up
to 70% (Figure 20 and 12).

4.6 Comparison with transient shape optimizations
Figure 13 in [Huang et al. 2024] runs shape optimization on the
transient drop test simulation directly by minimizing the! 4 norm
of stress on the load on top. To make a fair comparison, we pick
the same topology and same shape parametrization (i.e. exactly the
same shape design space), and optimize in the homogenization to
obtain the ideal shock-protecting structure with desired e�ective
stress. In Figure 21, our optimized structure has a much wider �at
range (55%) in the stress-strain plot, so the e�ective stress can be
smaller while absorbing the same amount of energy. We then run
exactly the same transient drop simulation with our method, and
it shows that our method further reduces the! 4-norm of stress
on the load and the maximum de-acceleration of the load, while
providing 47% more total impulse during the shock. This shows that
homogenization helps obtaining an even better result (with much
less time and memory as in Table 1) than optimizing a complete
structure consisting of many cells directly.

(A) (B) (C)

A

B
C

Stress (kPa)
4.0

2.0

0.0
0 20 40 60 80

Compression (%)

Fig. 20. The flat response of the topology and geometry proposed in
[Joodaky 2020] (A), can be considerably extended by optimizing its geomet-
ric parameters using our approach (B). Our microstructure family has a
di�erent connectivity (C), which provides an even wider flat response. We
show on the top the geometry of the corresponding cells in rest pose (top
row) and compressed at 50% (bo�om row).

Table 1.Comparison with [Huang et al . 2024]. We report the statistics
of the shape optimization in Figure 21. Columns from le� to right: peak
memory (Gb), number of iterations in the shape optimization, total time of
the optimization (min), and average time of each simulation (min).

Memory Iterations Total time Simulation avg.
[Huang et al. 2024] 9.9 9 561 18

Ours 5.2 33 239 4

4.7 Drop experiment
To further validate the shock-protecting e�ect of our microstruc-
ture family, we perform a drop experiment on one of our optimized
microstructures (Figure 22). We fabricate the microstructure in Fig-
ure 13 of size7 � 7 � 7 cm with resin (RESIONE F80 printed on a
Phrozen 8k Mighty printer) and drop a glass Christmas ball �lled
with 200g of small metal balls onto it. The microstructure protects
the ball, reaching 50% compression at the peak, preventing it from
breaking. With a solid cube at the bottom, the ball shatters when it
hits the ground.

4.8 Ablation study
We provide a series of ablation experiments to motivate our choice
of shape representation, including contact forces in homogeniza-
tion, using a non-linear material model, and using2 � 2 tile in
homogenizations.

Shape representation.Topology optimization is widely used in
shape design for microstructures [Li et al. 2022; Wallin and Tortorelli
2020b; Zhang and Khandelwal 2019]. To compare to our choice of
shape representation (Figure 4) in the optimization, we perform
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Strain (%) Time (sec) Time (sec)

E�ective Stress (kPa) Stress Norm (x1000 N) Acceleration (m/s�)

1 kPa 4 kPa

[Huang et al. 2024] Ours

Von Mises Stress
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0
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-5

-10
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Fig. 21. Top: Rest configuration and largest compression frame of [Huang
et al. 2024] and our optimized shape (with Von Mises stress distribution
shown). Bo�om: Stress-strain curves (le�) in homogenization,! 4 norm
of stress (middle) and acceleration (right) over time in the transient drop
simulation. The optimized microstructure in [Huang et al. 2024] (blue) is
flat up to 35%, while ours (orange) has an almost flat response up to 55%,
resulting in lower de-acceleration and stress in the drop simulation. The
total impulse of our microstructure during the first shock, i.e. area below
the first bump of the curve in the right plot, is 47% more than [Huang et al.
2024].

Fig. 22. Drop experiment with a glass Christmas ball with infill. The pictures
before (le�) and a�er the shock with a solid cube (middle) and optimized
microstructure (right) at the bo�om are shown.

the nonlinear homogenization on the optimized extendedj -shaped
structure using topology optimization. We rasterize the shape and
assign Young's modulus� = 106 Pato solid cells and� = 10� 2 Pa
to void cells. In Figure 23, the shape of void cells is close to singular
when solid cells approach contact, resulting in convergence issues
and poor accuracy in homogenization.

Although there are recent works [Bluhm et al. 2021] able to re-
solve contact in topology optimization in some cases, robust and
accurate handling of contact with topology optimization is largely
an open problem as contact behavior can be signi�cantly altered
e.g. by artifacts of surface extraction.

Contact.We optimized a pattern without contact forces and com-
pared the stress-strain plots with and without contact forces (Figure
24). While the optimization succeeds, the contact-aware homoge-
nized stress is much higher than expected. Ignoring contact during
optimization leads to considerably worse performance, as taking

Rest shape Deformed shape

Fig. 23. Homogenization simulated with topology optimization representa-
tion. Void cells between beams in contact are highly distorted.

Fig. 24. The microstructure pa�ern (A) is optimized without contact, we
then simulate the shape with (B) and without (C) contact and plot the
stress-strain curves.

contact into account is essential for correctly handling large defor-
mations. The contact forces unavoidably introduced in the test lead
to a non-�at response for the material optimized without contact,
while they are �at for the specimen optimized with contact.

Shear and expansion.To study how much shear and expansion
a�ect the shock-protecting performance, we run the optimization
on a couple of examples without shear and expansion penalty. Fig-
ure 25 shows the homogenization of an optimized pattern with shear
under compression. We then simulate the compression of the full
microstructure and experiment on the fabricated result (Figure 26).
It is undesirable in common applications where the protecting ma-
terial is packed into a �xed volume, so we favor patterns that nearly
have no shear under compression. For the same reason, we penal-
ize expansion in the horizontal direction as the microstructure is
compressed.

Microstructures with negative Poisson's ratio, which shrink in the
horizontal direction as they are compressed as in Figure 9, can still
�t into a �xed volume. However, the top and bottom planks force the
adjacent cells to not shrink, resulting in an hourglass-like shape (in
which the top and bottom are wide, while the middle is thin). In this
case, the shock-protecting e�ciency decreases, and the compression
force on the full microstructure increases much faster than the
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Rest Deformed

0

5

10

0 20 40

Shear (%)

Compression (%)

Fig. 25. Optimized pa�ern with shear under compression. The rest shape
and deformation at50%compression are shown on the le�; the shear -
compression curve is shown on the right.

Rest Shape
Experiment

Simulation

Fig. 26. Full simulation and physical experiment on the optimized pa�ern
in Figure 25. The experiment result matches closely with the simulation.

Fig. 27. Stress - compression plot for Figure 9. Homogenization on a single
cell (green), homogenization on a 2Ö2 tile (orange), and full simulation
without periodicity (blue). The stress of periodic simulations is scaled to
match the dimension of the full simulation.

homogenization stress under compression (Figure 27). Although
one way to get around this is to remove the planks and let the top
and bottom rows slide freely (by reducing friction coe�cients), it's
hard in practice to make the surface smooth enough, so we choose
to optimize for zero Poisson's ratio.

Symmetry.Symmetric tiles can buckle toward at least two con-
�gurations which are energetically equivalent: small imperfections
in fabrication or in the load direction will randomly select one. This
has a negative e�ect on large tilings, potentially a�ecting the overall
compression behaviour (Figure 28). Non-symmetric structures are
less prone to this issue and we thus do not use symmetric constraints
in our microstructure geometry.

Symmetric full simulation Asymmetric full simulation

Symmetric periodic simulation

Asymmetric periodic simulation

Fig. 28. Periodic and full simulations on symmetric and asymmetric cells.
The periodic deformation of asymmetric cells is consistent between small
and large tiles (bo�om), and matches with the full simulation; while for
symmetric cells the deformation on large tiles may consist of di�erent
deformation pa�erns (top), which is inconsistent with the full simulation.

Material model.We advocate for using a non-linear constitutive
law for the base material to more accurately capture large defor-
mations. In Figure 29 we reproduce the physical testing of one of
our samples with the linear elastic model and the nonlinear Neo-
Hookean model, using the same material parameters. The linear
model diverges from the nonlinear model at large strains (¡ 5%)
while the nonlinear model matches closely to the physical testing,
con�rming that a non-linear material model is essential for shock-
protecting materials. We performed the same physical testing 10
times, and recorded the �rst and last curves in Figure 29, to show
that the microstructure is capable of protecting against periodic
shocks.

Base material.Our optimized patterns are not sensitive to the
choice of base material. In Figure 30, we run full-scale compression
simulations on the microstructure tiling (C) in Figure 13 with dif-
ferent base materials. The curves are nearly overlapping for a wide
range of material choices.

4.9 Bistable shock-protecting structure
Our method can also optimize microstructures with a non-�at stress-
strain curve. To demonstrate this we set up an experiment to repro-
duce the bi-stable microstructure introduced in [Shan et al. 2015].
We reproduce the topology of their microstructure in our shape
representation, but not the geometry. The initial shape (Figure 31,
C) is not bistable and we optimize the stress-strain curve so that it
interpolates some prescribed points to become bistable (Figure 31,
D). To con�rm the bi-stable behavior, we fabricate the optimized
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Fig. 29. Compression and corresponding force - strain curves of the opti-
mized microstructure in simulations and experiments. The "Periodic" curve
in the plot is scaled by the dimension of the 3D model.

Fig. 30. Full-scale simulations on the microstructure tiling (C) in Figure 13
with di�erent base materials. The Y axis is the ratio between the compression
force and Young's modulus.

bistable microstructure and measured the stress-strain curve (Fig-
ure 31). The compressed microstructure stays compressed after the
compressive force is removed. In our experiment, only the middle
layer stays compressed due to the boundary e�ect on the left and
right sides (as shown in the video).

5 CONCLUSIONS
We presented a method for shape optimization of homogenized mi-
crostructure materials accounting for large deformation and contact.
We used our approach to discover the �rst family of shock-absorbing
microstructures a close to �at strain-stress curve up to 75% compres-
sion with varying e�ective stresses. Finally, we validated it both in
simulation and physical experiments.

Our work opens the door to optimizing metamaterial families
with non-linear materials and contact forces, and there are many
exciting directions for future works: (1) extension to shapes with
complex geometrical boundaries, for example using rhombic cells
[Tozoni et al. 2021], (2) add a plasticity model, and (3) extend the
construction to 3D microstructures.

There are a couple of limitations to our method. First, since the
homogenization problem is nonconvex and highly nonlinear, the

Fig. 31. Optimized bistable microstructure. (A) The initial blue curve is
optimized to the orange curve to interpolate the red points, with negative
stress from 30% to 40% strain. (D) The compressed microstructure stays
stable a�er the compression force is released.

solution to the forward problem may jump from one local minima
to another under small shape perturbation, so the objective can
sometimes be non-deterministic and discontinuous and cause line
search failure. Second, the internal deformation of microstructures
may be large, requiring the base material to have high elongation
at break and elasticity.

To foster reproducibility and adoption of this technique, we will
release both our microstructure family and a reference implementa-
tion of our optimization pipeline.
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A ADJOINT METHOD
We summarize the adjoint method applied to di�erentiating� below.

Adjoint Method.At the minima of, , in Equation 2, we have
mv, = 0. Di�erentiating both sides of the equation with respect to
the shape parametersq we obtain

3qmv, ¸ m2
v, 3 qv = 0•

i.e.

3qv = �¹ m2
v, º� 1mqmv, •

wherem2
v, is the Hessian of the total energy in the forward simula-

tion.
The gradient of� with respect toq then can be written as

3q� = mq� ¸ mv �3qv

= mq� � mv � ¹m2
v, º� 1mqmv, ”

(9)

Suppose? is the solution of the following linear equation

?) m2
v, = � mv � •

then it directly follows from (9),3q� can be simpli�ed to

3q� = mq� ¸ ?) mqmv, ”

Thus, to compute the shape derivative we need to computemv � , mq� ,
mqmv, and solve a linear equation with the same coe�cient matrix
as the linear system in the forward newton solve.

B ALGORITHM
The main function isOptimization ¹q0• nº, whereq0 are the initial
shape parameters, andn is the list of values of vertical strain for
which we evaluate the stress-strain curve. After every optimization
�nishes, we plot the stress-strain curve with dense samples (every
1%) to verify the optimized result: if the homogenized stress at every
sample point in the range is within10%of the target stress, we accept
the optimized result; otherwise, we reject it and stop optimizing for
larger strain range.

Function(>;E4solves a sequence of problems for increasing defor-
mations� 11, using the previous result as initialization, and calling
IncrementalSolve , which imposes a constraint on� 11as a penalty
with increasing weight, as this leads to a more reliable optimiza-
tion behavior.NewtonSolve is a standard Newton method, with
line search ensuring no self-intersections or element inversion [Li
et al. 2020]. It uses theForceSPDfunction to ensure that the Hes-
sian approximation used in the solve for the descent direction is
always positive-de�nite.ConstrainedNewtonSolve is similar to
NewtonSolve , but with � 11 �xed to the input scalar strainn.

The algorithm uses a few auxiliary functions for which we do not
provide explicit pseudocode as they are either standard or described
in other papers:

� Inflate is the mapping from shape parameters to the dis-
cretized domain (Section 6 of [Panetta et al. 2017]);

� LBFGSBreturns the descent direction using the L-BFGS solver
[Wieschollek 2016] with box constraints;

� LineSearch is the standard back-tracking line search.

function Optimization (q0• n)
q  q0
�  0 • Number of iterations


  Inflate ¹qº • Section 3.3

~u• �  Solve¹
 • nº • Section 3.4

�  Objective ¹q• ~u• � º • Section 3.5

g  r Objective ¹q• ~u• � º • Section 3.6

repeat
p  LBFGSB¹�•gº • Descent Direction

U  LineSearch¹q•pº
q  q ¸ Up

  Inflate ¹qº • Section 3.3

~u• �  Solve¹
 • nº • Section 3.4

�  Objective ¹q• ~u• � º • Section 3.5

g  r Objective ¹q• ~u• � º • Section 3.6

�  � ¸ 1
until kgk Ÿ Y0 or k� k Ÿ Y1 or � ¡ �C4A"0G
return @

end function
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function Solve(
 • n)
~u»0¼  0
� »0¼  0
for :  1 to ;4=6C�¹nº do

~u»: ¼• � »: ¼= IncrementalSolve ¹ ~u»: � 1¼• � »: � 1¼• n»: ¼º
end for
return ~u• � • List of solutions

end function

function IncrementalSolve (~u0• � 0• nTarget)
~u  ~u0
�  � 0
F  F 0 • Initial weight, initially 104

40  j � 11 � nTargetj
4  40
repeat

~u• �  NewtonSolve ¹nTarget•F•~u• � º
4  j � 11 � nTargetj
F  2F
if 4 ¡ 40 then • Worse than initial solution

F 0  F
»~u• � ¼  » ~u0• � 0¼

end if
until 4 Ÿ n2
� 11  nTarget
~u• �  ConstrainedNewtonSolve ¹nTarget• ~u• � º • Fix � 11 in

the solve

return ~u• �
end function

function NewtonSolve (n• F• ~u• � )
~,  , ¹ ~u• � º ¸ F j� 11 � nj2 • Energy to be minimized

repeat
�  ForceSPD¹r 2 ~, ¹ ~u• � ºº
p  � � � 1r ~, ¹ ~u• � º • Descent Direction

U  ConstrainedLineSearch ¹ ~u• �• pº
»~u• � ¼  » ~u• � ¼ ¸Up

until kr , ¹ ~u• � ºk Ÿ Y1
return ~u• �

end function

function ForceSPD(� )
V  10� 8

~�  �
while ~� is not SPDdo

~�  � ¸ V�
V  10V

end while
return ~�

end function

Fig. 32. Geometry of a pure-bending, constant-curvaturej -structure.

C ANALYTIC APPROXIMATION TO THEj -STRUCTURE.
To elucidate the physical mechanism making the �at stress response
possible, we consider aj -structure, shown in Figure 32, assembled
from ideal beams in length-preserving beams in the pure bending
state. This is a good approximation of thin beams, as the bending
energy for small beam cross-section is lower than the extension/-
compression energy. We approximate the deformation of each beam
under compression by a constant-curvature deformation, i.e., a circu-
lar arc. The structure has a single geometric parameter, the angleV.
We also introduce the length of the beams! , but the choice of length
does not have an impact on the result. Suppose we impose vertical
strainnand zero horizontal strain. With constant-curvature assump-
tion, we can compute the elastic energy, of the deformed state
explicitly, from which we can infer the stress-strain dependence,
with stressf = 3, •3n.

For a beam of constant curvaturê= 1•' and length! , the Euler
elastica bending energy is, up to a material-dependent constant,
! • ' 2 (e.g., [Matsutani 2012]), i.e., it is su�cient to estimate' from
n and! . From the geometry of the deformation, we obtain:

¹! � � ! º2 = ¹1 � nº2! 2 sin2 V¸ ! 2 cos2 V

� ! = ! � 2' sinU
(10)

whereU = ! •¹ 2' º = !
2^

Up to higher order terms, from the �rst equation, we obtain� ! =
!n sinV2, and from the second equation,sinU•0;?�0 = 1 � � ! • ! =
1 � nsinV2. As sinU•U � 1 � U2•6, we obtainU �

p
6nsinV, and

, ¹nº = ^2! = 4U2• ! � 24nsin2 V•! .
From this expression, we conclude that for small deformations,

the stress3, •3n � sin2 V•! does not change with stress. In fact, as
Figure 33 shows, even for highn the behavior ofU2 and therefore
, is close to linear, so the stress-strain response remains close to
�at. The key observation is that by converting compression of the
lattice cells into beam bending, instead of the energy depending on
the strain quadratically, leading to the common linear stress-strain
curve, the energy depends on the strain linearly.

D STRAIN VARIATION UNDER COMPRESSION
A multilayer structure consisting of cells optimized for a �at stress-
strain curve can exhibit complex internal behavior depending on
small �uctuations of the e�ective stress-strain without changing
the overall response.

Consider a homogeneous block of material of height! compressed
in one direction~ with (overall) stress-strain responsef = 5¹nº,

compressed to a vertical (overall) strainn0 := 1
!

¯ !
0 n3~. We consider
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Fig. 33. Precise energy - strain curve, for the pure-bending, constant-
curvaturej -structure (blue) is close to linear (red).

Fig. 34. Notation for analysis of non-monotonic stress-strain curves.

Fig. 35. Maximum and minimum stress over all cells in Figure 15. The
relative di�erence between the maximum and minimum at each strain is
within 10� 6.

the distributions of strain and stress over the material block below.
Assume that the Poisson ratio is zero for simplicity so that both
strain and stress are one-dimensional. Assume for force equilib-
rium over the material block, then from the 1D Cauchy equation,
mf•m~= 0, i.e. the stress (denoted asf 0) is constant over the whole
block. If 5¹nº is strictly monotonic overn, this also implies constant
strain over the block, as for the constant stressf 0, corresponding
constant pointwise strainn0 is determined uniquely. Figure 36 ver-
i�es that when the stress-strain curve is strictly monotonic, the
compression of the microstructure is uniform, unlike Figure 13
where rows collapse in random order. For non-strictly monotonic
5¹nº the situation may be di�erent: there may be vertical ranges of
the block with the same stress but di�erent strainsn8, with equal
values of5¹n8º = f . Observe, however, that the total elastic energy
is ¹ !

0
n5¹nº3~ = f 0

¹ !

0
n3~= !n 0f•

which is deterministic and simply proportional tof 0, irrespective
of the indeterministic distribution of strains.

Fig. 36. Compression of the microstructure with strictly monotonic stress-
strain curve is uniform, despite the slightly higher sti�ness on top and
bo�om rows due to the fixed beam.

For the target average strainn0, considerf < = minn>n0 5¹nº,
and letn2 be the strain for whichf < is attained (Figure 34). If
5¹nº ¡ 5¹n0º for anyn ¡ n0 (i.e.n2 = n0), then constant-strain state
with stressf has lowest energy: if the strain were non-constant, at
some locations, the strain would ben ¡ n0, wheref ¹nº ¡ f < , as
the stress is constant, it is abovef < everywhere, i.e., the energy is
higher. If however,n2 ¡ n0 so that5¹n2º Ÿ 5¹n0º, and we assume
that 5¹0º = 0, by continuity, there is also anothern1 Ÿ n0, for
which 5¹n1º = f < . Pick, e.g., the minimal one with this property.
Then by choosing! 2 = n0� n1

n2� n1
and ! 1 = ! � ! 2, for any strain

distribution the set with strainn8 with measure! 8, we get energy
!n 0f < , which is the lowest possible. This holds because for any
non-uniform strain distribution, we need to have strains aboven0
and this is the lowest possible stress value in this case, and for a
uniform distribution the energy isn0!5 ¹n0º ¡ n0!f < . Only the
measures of two sets matter, not whether these are contiguous or
where the two di�erent stress domains are located, i.e., there are
many possible states with the same energy, and the chosen one
depends on the deformation history. This is a continuum version of
bistability. Figure 35 con�rms that in the case where the periodic
stress-strain curve oscillates, even though the strains of di�erent
rows are di�erent in the microstructure, the stresses of di�erent
rows are close to the same.

We conclude that for a range of average strainsn0, the material
will form two phases, with two di�erent strains.

The discussion above suggests that the static simulation of an
ideal shock-protecting material is possibly non-deterministic, how-
ever, transient simulations are still deterministic thanks to the iner-
tia.

E PATTERNS
We perform the compression test virtually and physically, using a
universal testing machine. We show the optimized structures and
their compression experiments in Figure 37.

The optimization cannot always �nd a geometry with a �at stress-
strain curve for a given cell topology, i.e. the objective (7) may not
be close to zero when the optimization converges, in which case we
give up on this topology. We show a collection of topologies that
fail to reach a �at response in Figure 38.
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ExperimentsRest shape Deformed shape tolp niarts - ecroFepahs laitinI

Fig. 37. A collection of optimized pa�erns validated in physical experiments. From le� to right: Initial shapes, optimized rest shapes, deformation of optimized
shapes, compression experiments, force (N) - strain (%) plots of the experiments (blue), and periodic simulations (orange).

Rest

Deformed

Rest

Deformed

Fig. 38. A collection of topologies that could not be further optimized to fit
a constant stress-strain curve up to25%strain under our constraints.
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