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1 COMPARISON TO OTHER CONTACT PAPERS
In this section, we review a broad collection of computational meth-
ods for contact mechanics, with a focus on how the contact con-
straints are formulated and handled numerically. These methods
include contributions from graphics, mechanical engineering, and
numerical analysis. Our method is unique in that it simultaneously
satisfies all of the following requirements: handles a general class
(piecewise smooth) of surfaces, is derived from and consistent with
a continuum formulation, requires no contact labeling, handles 3D
geometries, is localized, does not cause spurious forces, is differ-
entiable, handles self-contact, and guarantees an intersection-free
simulation at all times.

Table 1 summarizes this comparison. The columns are organized
as follows:

• Reduction: the method’s approach of reducing the nonlinear
inequality-constrained problem to a problem or sequence of
problems for which an efficient numerical method is available.

• Surface types: the class of surfaces handled by the discretized
version of the methods.

• Discrete/continuous: whether the formulation proceeds di-
rectly from the discrete case or starts with a continuummodel.

• Contact labeling: whether or not the surfaces in contact must
be marked a priori.

• 3D: whether or not the method was formulated and imple-
mented in 3D.

• Gap function type: how a method measures the distance to
contact for a given configuration.

• Numerical method: the numerical method used to solve the
reduced version of the problem, if applicable.
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• Strong barrier: If the method is a barrier method, this column
indicates if the barrier growth is sufficiently fast for the total
potential to diverge as the configuration approaches contact.

• Localization: whether the support of the potential is limited
to points at a prescribed distance.

• Spurious rest forces: whether or not there are spurious contact
forces at the rest state or close.

• Differentiability: whether or not the method is differentiable
with respect to the surface configuration. Restricted differ-
entiability refers to being differentiable only for a subset of
configurations (e.g., assuming that the surfaces are sufficiently
close to contact).

• Self-contact: whether or not the method handles self-contact.
• Intersection-free: whether or not the scene is guaranteed to
remain in an intersection-free configuration at all points on
the surface at all times.

• Consistency: if the method begins from a continuum formu-
lation, it describes if the discretized problem converges to
the continuum problem in the limit (this does not, in general,
imply solution convergence).

In addition, there are several abbreviations used in the table:

• CP: closest point projection.
• DND: distance along the normal direction.
• CPCD: closest point between contact pairs.
• LCP: linear complementarity problem.
• SQP: sequential quadratic programming.
• PL: piecewise linear.
• p.w. smooth: piecewise smooth.
• GS: Gauss-Seidel method.
• PD: projective dynamics.
• XPBD: extended position-based dynamics.

1.1 Comparison Details
[Belytschko and Neal 1991]

• Gap function: The distance between spheres centered at sam-
ple points on the surface ("pinballs").

• Intersection-free: Collision detection is only on pinballs, mean-
ing the finite element meshes may intersect.

[Carpenter et al. 1991]

• Intersection-free: The target surface nodes may penetrate the
surface (Fig. 1) even if the inequalities are satisfied.

[Taylor and Papadopoulos 1993]

• Spurious forces at rest: The contact force is nonzero only for
zero distance.
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Table 1. Comparison with prior methods handling collisions.
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[Belytschko and Neal 1991] active set bilinear C No Yes other* linear solver N/A Yes No restricted Yes No Yes

[Carpenter et al. 1991] active set PL D No No CP GS N/A Yes No restricted Not descr. No N/A

[Taylor and Papadopoulos 1993] active set PL C No No DND Newton N/A Yes No restricted Not descr. No Yes

[Vola et al. 1998] active set PL D No No DND Lemke's algorithm N/A Yes No restricted Not descr. No N/A

[Hüeber and Wohlmuth 2006] active set PL C Yes Yes DND linear solver* N/A Yes No restricted Yes No Yes

[Popp et al. 2012] active set p.w. smooth* C Yes Yes DND not described* N/A Yes No Yes No No Yes

[Razon et al. 2023] active set PL D No Yes CPCD Newton N/A Yes No Yes Yes Yes N/A

[Alart and Curnier 1991] augmented Lagrangian PL D Yes No CP modified/non-smooth Newton* N/A Yes No Yes Not descr. No N/A

[Simo and Laursen 1992] augmented Lagrangian PL C No* No CP Newton N/A Yes No Yes No No Yes

[Wriggers 1995] augmented Lagrangian PL C No No CP Newton N/A Yes No Yes Yes No Yes

[Pietzrak and Curnier 1999] augmented Lagrangian PL C Yes* Yes CP Newton N/A Yes No Yes No No Yes

[Puso and Laursen 2004] augmented Lagrangian PL, bilinear D Yes Yes other* Newton N/A Yes No Yes Not descr. No N/A

[Puso et al. 2008] augmented Lagrangian p.w. smooth* D Yes Yes other* Newton N/A Yes No Yes Not descr. No N/A

[Hiermeier et al. 2018] augmented Lagrangian smooth* C Yes Yes other* Newton N/A Yes No Yes Not descr. No Yes

[Fernandez et al. 2020] augmented Lagrangian PL C Yes Yes other* Newton N/A Yes No Yes Not descr. No Yes

[Daviet 2020] augmented Lagrangian PL D No Yes CPCD GS/Newton* N/A Yes No Yes Yes No N/A

[Puso et al. 2024] augmented Lagrangian PL, bilinear D Yes Yes other* Quasi-Newton N/A Yes No Yes Not descr. No N/A

[Sauer and De Lorenzis 2013] augmented Lagrangian, penalty, barrier PL C No Yes other* Newton Yes Yes Yes Yes Not descr. No Yes

[Christensen et al. 1998] barrier PL D Yes* No DND Non-smooth Newton; interior point N/A Yes No restricted No No N/A

[Temizer et al. 2014] barrier smooth* C Yes Yes CP Newton* Yes Yes No restricted No No Yes

[Kamensky et al. 2018] barrier smooth* C No Yes Other* Newton No Yes Yes Yes Yes No Yes

[Li et al. 2020] barrier PL D No Yes CPCD Newton Yes Yes Yes Yes Yes Yes N/A

[Alaydin et al. 2021] barrier smooth C No Yes other* Newton Yes Yes Yes Yes Yes No Yes

[Li et al. 2023] barrier PL C No Yes CPCD Newton Yes Yes Yes Yes Yes Yes Yes

[Wang et al. 2024] barrier PL C No Yes DND Newton* N/A Yes No restricted Not descr. No Yes

[Sassen et al. 2024] barrier PL C No Yes CPCD Newton No No Yes Yes Yes No Yes

[Huang et al. 2024] barrier PL D No Yes CPCD Gauss-Newton Yes Yes Yes Yes Yes Yes N/A

[Shen et al. 2024] barrier PL D No Yes CPCD Projected GS Yes Yes Yes Yes Yes No N/A

[Du et al. 2024] barrier PL + implicit* D No Yes other* Newton Yes Yes Yes Yes Yes No N/A

Ours barrier p.w. smooth C No Yes other Newton Yes Yes No Yes Yes Yes Yes

[Otaduy et al. 2009] LCP PL D No Yes CPCD* Projected GS* N/A Yes No Yes Yes No N/A

[Verschoor and Jalba 2019] LCP PL D No Yes CPCD QP/Projected CR N/A Yes No Yes Yes No N/A

[Macklin et al. 2019] minimum map/Fischer-Burmeister PL D No Yes CPCD Non-smooth Newton N/A. Yes Yes Yes Not descr. No N/A

[Kloosterman et al. 2001] modified barrier PL D Yes* No DND Newton* No No Yes No No No N/A

[Belgacem et al. 1998] N/A smooth* C Yes No DND N/A N/A Yes No restricted No No Yes

[Taylor and Wriggers 1999] N/A smooth* C Yes* No CP* unknown* N/A Yes No Yes No No Yes

[Larionov et al. 2021] other PL + implicit* D No Yes other* staggered projections/interior point* N/A Yes No Yes No No N/A

[Macklin et al. 2020] PD/XPBD PL D No Yes CPCD Newton* N/A. Yes Yes Yes Not descr. No N/A

[Benson and Hallquist 1990] penalty PL D No Yes DND* Newton N/A Yes Yes Yes Yes No N/A

[Wriggers 1995] penalty PL C No No CP Newton N/A Yes No Yes Yes No Yes

[Armero and Petőcz 1998] penalty PL C No No CP Newton N/A Yes No restricted No No Yes

[Laursen and Love 2002] penalty PL D No Yes DND Newton N/A Yes No restricted Not descr. No N/A

[Kim and Eberle 2022] penalty PL D No Yes CPCD Newton/Projected CG N/A Yes No Yes Yes No N/A

[Chen et al. 2024] penalty PL D No Yes CPCD Other* N/A Yes No Yes Yes No N/A

[Temizer et al. 2012] penalty smooth* C Yes Yes CP Newton with Uzawa augmentations N/A Yes No restricted No No Yes

[Kane et al. 1999] SQP PL C No Yes other* Other* N/A Yes No No Yes No Yes

[Deuflhard et al. 2008] SQP PL C Yes* No other* multigrid with Projected GS* N/A Yes No Yes Not descr. No Yes

[Youett et al. 2019] SQP PL C No Yes other* multigrid with Projected GS* N/A Yes No Yes Not descr. No Yes

[Kaufman et al. 2008] staggered projections/QP PL* D No Yes other* active set solver for QP* N/A Yes No Yes Yes No N/A
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• Notes: Does not describe in detail how the active set is de-
termined, refers to previous work describing the release of
contact based on pressure.

[Hüeber and Wohlmuth 2006]
• Numerical method: Multigrid is used to solve linear problems.
Active set updates are interleaved with multigrid iterations.

[Popp et al. 2012]
• Numerical method: Primal-dual active set method.
• Surface types: Quadratic finite elements are used.

[Razon et al. 2023]
• Intersection-free: The geometrically exact CCD from [Brochu
et al. 2012] is used.

[Alart and Curnier 1991]
• Numerical method: Solves for primal and dual variables at the
same time, instead of alternating.

[Simo and Laursen 1992]
• Contact labeling: Contact is assumed to occur between a de-
formable body and a rigid, immovable obstacle.

[Wriggers 1995]
• Consistency: This method is also convergent. An error esti-
mator is given for linear elastic contact problems with small
deformations.

• Notes: One of several methods described in the book.
[Pietzrak and Curnier 1999]
• Contact labeling: The contact surface should be specified,
and a bijective mapping is assumed between the surfaces in
contact.

[Puso and Laursen 2004]
• Gap function: The normal direction at a node is given by
averaging the incident face normals. The contact forces are
weighted by the overlap of the two contact surfaces when
projected to the tangent plane on the non-mortar side.

[Puso et al. 2008]
• Surface types: Quadratic finite elements are used.
• Gap function: The gap function from [Puso and Laursen
2004] is modified to interpolate quadratic elements into linear
subelements.

[Hiermeier et al. 2018]
• Surface types: NURBS surfaces and Lagrange basis are sup-
ported. A continuous normal field is assumed.

• Gap function: The distance between contact nodes along the
normal direction of the slave side.

• Notes: Explanation of the geometry:
https://link.springer.com/article/10.1007/s00466-016-1345-4. This
has a discussion of nonconvergence, cycling in particular.

[Fernandez et al. 2020]
• Gap function: The distance between contact nodes along the
surface normal direction.

[Daviet 2020]
• Numerical method: An ADMM version of the augmented
Lagrangian is used.

• Notes: The possibility of penetration is discussed. The author
states that some constraint violations may be desirable in
order to avoid excessive artificial strains in certain scenarios.
A method for controlling the acceptable amount of contact
non-compliance is described. To be specific, an artificial slack
variable can be introduced, and some of the contact-induced
deformation is felt by the artificial vertex, not the physical
one. The amount of acceptable non-compliance is controlled
by the relative weight of the true and artificial vertices.

[Puso et al. 2024]

• Gap function: The gap function from [Puso and Laursen 2004]
is modified to project quadrature points to the non-mortar
side along the nodal normal instead of to the closest point.

[Sauer and De Lorenzis 2013]

• Gap function: The potentials cannot guarantee that the results
are penetration-free (even for barrier-type potentials) and
have to be defined for negative distances.

• Intersection-free: The barrier method may have intersections
due to numerical error (as pointed out in the paper) and lack
of CCD.

• Notes: This paper presents a unified framework, where dif-
ferent choices of potential correspond to different methods
from prior work. This row refers to the barrier method in the
paper.

[Christensen et al. 1998]

• Contact labeling: A subset of the nodes should be designated
as contact nodes.

• Self-contact: The algorithm assumes two separate bodies in
contact.

• Consistency: The convergence of the MP method is discussed,
but not under refinement.

[Temizer et al. 2014]

• Numerical method: A two-stage Newton scheme is used to
reduce the barrier parameter after each iteration.

• Surface types: A NURBS discretization of the contact surface
is used.

• Intersection-free: Without CCD, intersections may happen
during the solve. One object with large momentum may pass
through the other object during the solve, even though the
configuration after the solve is intersection-free.

• Notes: The issue of violating geometrical constraints is men-
tioned: "Within a typical Newton–Raphson type iterative
solution of a contact problem based on this method, the in-
cremental update may move the solution outside the feasible
region and there is no straightforward procedure for modify-
ing the displacement update to prevent this violation. This is
a central challenge."

[Kamensky et al. 2018]

• Gap function: The gap function is evaluated on all point pairs
(excluding close pairs within a user-specified distance in the
rest configuration) in a set of fixed quadrature points within
the volume.
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• Barrier : The discretization’s choice of quadrature pointsmeans
some penetrating configurations where the quadrature points
aren’t overlapping could have finite potentials.

• Spurious forces at rest: A poorly chosen radius of the ball
to exclude around a point could lead to spurious forces. In
addition, the potential is not orientation-aware, which may
also lead to spurious forces.

• Self-contact: A fixed-radius ball around a point is excluded.
• Intersection-free: For example, if an object is stretched such
that its quadrature points are far enough apart, another object
may be able to pass through. Additionally, no CCD.

[Li et al. 2020]

• Spurious forces at rest: There are examples of spurious forces
in the evaluation section of our paper.

• Intersection-free: Yes, through barrier potential and CCD.
• Notes: "...even small violations of exact contact constraints
(which are nonconvex) can lead to impossible to untangle
geometric configurations, with a direct impact on physical
accuracy and stability."

[Alaydin et al. 2021]

• Gap function: See [Kamensky et al. 2018].
• Spurious forces at rest: See [Kamensky et al. 2018].
• Self-contact: The algorithm excludes a ball around a point
from consideration for contact pairs, with a user-defined ra-
dius.

• Intersection-free: The collision barrier is only defined on a
set of fixed quadrature points, meaning the finite element
meshes may intersect.

[Li et al. 2023]

• Spurious forces at rest: There are examples of spurious forces
in the evaluation section of our paper.

• Intersection-free: Yes, through barrier potential and CCD.

[Wang et al. 2024]

• Numerical method: Interior-point solvers Ipopt and HiOp are
used.

• Intersection-free: Without CCD, intersections may happen
during the solve. One object with large momentum may pass
through the other object during the solve, even though the
configuration after the solve is intersection-free.

[Sassen et al. 2024]

• Barrier : The integral form of the barrier potential converges to
infinity when it approaches contact, however, the quadrature
only includes each face center, so the barrier is finite when
the intersection is not at the face center.

• Spurious forces at rest: There are examples of spurious forces
in the evaluation section of our paper.

• Intersection-free: The barrier is discretized with a single-point
quadrature rule at each face center, so the barrier is only
infinite when a face center is in contact.

• Consistency: The method is also convergent. Convergence
studies are included in the paper.

[Huang et al. 2024]

• Spurious forces at rest: The method has the same spurious
forces as [Li et al. 2020] and [Li et al. 2023].

• Intersection-free: Yes, through barrier potential and CCD.
[Shen et al. 2024]
• Spurious forces at rest: The method has the same spurious
forces as [Li et al. 2020] and [Li et al. 2023].

• Intersection-free: CCD is not used. Examples of intersections
are shown in the supplemental material.

[Du et al. 2024]
• Surface types: The input piecewise linear surface is approx-
imated by an implicit surface, and both representations are
used in the collision handling. It’s non-trivial to extend to
high-order input surfaces.

• Gap function: The distance between contact nodes along the
surface normal direction. The surface normal is computed on
the implicit representation.

• Spurious forces at rest: The method has the same spurious
forces as [Li et al. 2020] and [Li et al. 2023].

• Self-contact: The algorithm excludes a fixed-size ball around
a point.

• Intersection-free: The CCD is not performed on the implicit
surfaces, so nodes may penetrate the implicit surfaces.

[Otaduy et al. 2009]
• Numerical method: Newton is used for time stepping. There
is an additional algorithmic step to eliminate geometric con-
straint violations at every step.

• Gap function: The distance along the contact normal between
contact pairs for edge-edge and vertex-face.

• Notes: A contact-free state is ensured by the "constraint man-
ifold refinement."

[Kloosterman et al. 2001]
• Numerical method: Augmented Lagrangian style method is
used, but with barrier instead of penalty.

• Contact labeling: The contact nodes should be specified; other-
wise, the barrier includes all pairs of primitives, and adjacent
nodes may be pushed apart.

• Barrier : The log barrier converges to infinity at a negative dis-
tance, and the object may penetrate even more, so a quadratic
extrapolation of the log barrier is introduced.

• Spurious forces at rest: The log barrier term has global support,
which means there’s interaction between nodes far apart.

• Differentiability: When the closest projection of a node on the
contact surface is not unique, the functional is non-differentiable
and may cause non-convergence.

• Self-contact: The algorithm assumes two separate bodies in
contact.

• Intersection-free: The log barrier is extrapolated to a quadratic
penalty in the object’s interior, which means intersections
may happen even though a log barrier is used.

[Belgacem et al. 1998]
• Surface types: The formulation applies to a general class of
finite element bases for surfaces. A well-defined outward unit
normal vector is assumed. However, numerical implementa-
tion is not discussed.
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• Consistency: The discrete formulation is consistent with the
continuous formulation, and an error estimate between the
discrete and true solutions is given.

[Taylor and Wriggers 1999]
• Numerical method: The algorithm is implemented in FEAP
without mentioning the numerical method used.

• Surface types: A smooth normal field on the surface is as-
sumed.

• Contact labeling: The contact surface must be specified.
• Gap function: It is assumed that the surface is at least locally
convex.

[Larionov et al. 2021]
• Numerical method: Uses iPopt solver to solve nonlinear sub-
problems with bound constraints.

• Surface types: The input piecewise linear surface is approx-
imated by an implicit surface, and both representations are
used in the collision handling. It’s non-trivial to extend to
high-order input surfaces.

• Gap function: The distance between contact nodes along the
surface normal direction. The surface normal is computed on
the implicit representation.

[Macklin et al. 2020]
• Numerical method: A Newton-like method is used.

[Benson and Hallquist 1990]
• Gap function: The normal direction at a node is obtained by
averaging the incident face normals.

• Spurious forces at rest: If an object is thinner than a bucket
width, used for contact detection, contact forces could be
felt on the opposite side of the surface (e.g., for an inflated
balloon). Corners also present problems if the wrong side is
picked (Figure 7 in the paper).

• Differentiability: In most cases, the method is differentiable.
Extremely deformed elements may abruptly leave the local
region where contacts are searched for. The element consid-
ered in contact with a given node may change sharply if its
path transitions between different closest elements.

• Self-contact: Explicitly deals with non-smooth contact (does
not assume normal existence). In the formulation introduced,
an ideal barrier (infinite for admissible) is used. Time-stepping
is written as a minimization problem, but the inequality form
is returned to and solved using SQP.

[Wriggers 1995]
• Consistency: This method is also convergent. An error esti-
mator is given for linear elastic contact problems with small
deformations.

• Notes: This row refers to the penalty method in the book.
[Armero and Petőcz 1998]
• Self-contact: The algorithm assumes two separate bodies in
contact, and uses the closest point projection between them
in the gap function definition.

• Notes: The gap function is updated incrementally during time
stepping.

[Kim and Eberle 2022]

• Notes: A method to resolve intersections using Global Inter-
section Analysis is described. They claim failure cases are an
inevitable part of production work.

[Chen et al. 2024]
• Numerical method: A custom block coordinate descentmethod
based on local Gauss-Seidel iterations is used.

• Notes: CCD is performed only for some iterations to save
computational costs. The authors acknowledge this may miss
collisions but claim it is likely that they will be captured at
the next check.

[Temizer et al. 2012]
• Surface types: A NURBS discretization of the contact surface
is used.

[Kane et al. 1999]
• Numerical method: The numerical method is not described in
detail; SQP is briefly mentioned.

• Gap function: A polynomial form derived from the signed
area (volume) associated with contact pairs.

• Spurious forces at rest: The contact force is active only when
segments intersect.

• Differentiability: The contact energy is defined to be infinite
for intersecting configurations and zero otherwise. The pro-
jection back to the admissible set is also not unique.

• Notes: Explicitly deals with non-smooth contact (does not
assume normal existence). The formulation introduced uses
an ideal barrier (zero for admissible configurations, infinite
otherwise).

[Deuflhard et al. 2008]
• Numerical method: Multigrid is used to solve QPs with pro-
jected Gauss-Seidel applied at different levels.

• Contact labeling: A bijective map between the two surfaces
in contact is assumed to be given.

• Gap function: They assume a one-to-one correspondence be-
tween two surfaces, and the distance between corresponding
nodes on two contact surfaces is used.

• Notes: A bijective mapping between mortar and slave surfaces
is assumed.

[Youett et al. 2019]
• Numerical method: QPs are solved using a truncated non-
smooth Newton multigrid method, with projected Gauss-
Seidel applied at different levels.

• Gap function: The distance between contact nodes along the
surface normal direction is used.

[Kaufman et al. 2008]
• Numerical method: A QL active set solver is used.
• Surface types: A well-defined outward unit normal vector is
assumed.

• Gap function: Contact is enforced using velocity constraints.
The constraints are based on the relative velocity of contact-
ing points along the normal direction.

• Notes: Discusses the possibility of frictional forces creating
new contact violations. The predictor-corrector method aims
to address this.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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2 IMPLEMENTATION DETAILS
Our implementation makes use of most parts of the IPC algorithm,
except for the potential formulation. We first utilize the existing
broad-phase algorithm to collect contact interactions (edge-vertex
in 2D, edge-edge and face-vertex in 3D) within 𝜖trg.
Then in 2D, we split edge-vertex interactions into edge-vertex

and vertex-vertex pairs, where the former only contain pairs whose
minimum distance is not reached at the endpoints of the edge (oth-
erwise the potential vanishes due to mollification). Similarly, in 3D,
we split face-vertex interactions into face-vertex, edge-vertex, and
vertex-vertex pairs. Face-vertex pairs only contain those whose min-
imum distance is reached in the interior of the triangle; edge-vertex
pairs only contain those whose minimum distance is reached in
the interior of the edge. Note that we don’t need to further split an
edge-edge interaction, since if it reduces to an edge-vertex pair, it’s
already included in the face-vertex interactions. In total, we have
2 types of collision pairs in 2D and 4 types in 3D. The reason why
we have more types than IPC is that the restriction in the distance
direction and edge/face orientation requires a finer classification of
the contact interactions from the broad phase. More types of pairs
do not necessarily lead to a larger number of pairs; in fact, we have
shown that the number of pairs is generally smaller than IPC.
Since our formulation allows for a 𝜖 (𝑥), i.e., the distance barrier

support size, larger than the mesh edge length, simply filtering the
interactions by distance is not enough for efficiency, since every ver-
tex has interaction with its 1-ring neighbors. To avoid a significant
increase in cost, we first compute the distance types of pairs and
evaluate the potential with double precision. For piecewise func-
tions with large ranges of constant values ℎ𝜖 , 𝐻𝛼,𝑏 , 𝛿𝛼 , we cache
in which range the variable belongs, to filter pairs with ℎ𝜖 = 0, and
to avoid computation of gradient and hessian at trivial values (e.g.
when 𝐻𝛼,𝑏 (𝑧) = 1). Note that even if 𝜖 (𝑥) is larger than the edge
length, it’s undesirable to have contact everywhere on the surface
(otherwise spurious stresses may appear), so the number of pairs
with positive potential values is still sparse on the surface in most
cases. We then use auto-generated code from Sympy to compute the
gradient and Hessian for every collision pair. We observe that in our
examples, the FEM assembly and linear solve are far more expensive
than our computation of potential derivatives, so we don’t further
optimize the efficiency of the potential evaluation.

3 CONVERGENT IPC LIMITATIONS
Here we evaluate the “Convergent IPC” [Li et al. 2023] formulation
and compare it to our own.

Li et al. [2023] defines the continuum form of the IPC potential as

𝜓 𝐼𝑃𝐶 (𝑥 ; 𝑓 ) = max
𝑦, ∥𝑥−𝑦 ∥>𝑟

𝑝IPC𝜖 (∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥)

where the barrier function

𝑝IPC𝜖 (𝑧) =
{
−𝜅

(
𝑧
𝜖 − 1

)2 ln (
𝑧
𝜖

)
0 < 𝑧 < 𝜖

0 𝜖 ≤ 𝑧

and 𝑟 (with 𝑟 → 0) is a small radius within which self-contact is
ignored. From the above expression, one can make several observa-
tions.

Fig. 1. Here we show the situation for which the dependence of the mini-
mum distance on 𝑓 is only𝐶0 continuous for the “Convergent IPC” formu-
lation [Li et al. 2023]. Suppose for 𝑡 < 𝑡0, 𝑑0 > 𝑑1 (i.e., 𝑑1 is minimal) and it
changes at the constant rate 𝑣1 on some interval 𝑡𝑠 ≤ 𝑡0 < 𝑡𝑒 . Similarly, 𝑑0
is changing at a higher velocity 𝑣0, but initially is further away, becoming
the closest point for 𝑡 > 𝑡0. Although in 𝑓𝑡 the dependence of 𝑓 on 𝑡 is
smooth at every point, the minimal distance does not have a derivative
w.r.t. 𝑡 at this point. If we think in discrete terms, and the endpoints of two
segments are 𝑞𝑖 𝑗 , 𝑖, 𝑗 = 0, 1, then we can write𝑑min (𝑡 ) = min(𝑑0 (𝑡 ), 𝑑1 (𝑡 ) )
as a function 𝑑min (𝑞00 + 𝑣0𝑡, 𝑞01 + 𝑣0𝑡, 𝑞10 + 𝑣1𝑡, 𝑞11 + 𝑣1𝑡 ) , the derivative
w.r.t. 𝑡 is the directional derivative w.r.t. the vector of degrees of freedom
𝑞𝑖 𝑗 , in the direction [𝑣00, 𝑣01, 𝑣10, 𝑣11 ], and it has a discontinuity.

First, instead of the integral 𝜓 is computed as max; this is not
smooth w.r.t. 𝑓 . This is recognized by Li et al. [2023] with a couple
of options proposed (e.g., 𝐿𝑝 -norm or LogSumExp) but not imple-
mented. Instead, a smoother approximation is done in the discrete
case. Therefore, the method uses a smoother approximation to a non-
smooth limit potential. As refinement progresses, the approximation
becomes less smooth.
A specific example for which the max is not smooth is when

there is a switch between two parametrically distant closest points.
Suppose for some 𝑥 there are two points 𝑓 (𝑦0) and 𝑓 (𝑦1) equidistant
from 𝑓 (𝑥), and with the distance less than 𝜖 . If 𝑓 is time-dependent,
i.e., we consider a family 𝑓𝑡 , with a scalar parameter 𝑡 , then at a
point 𝑦, the velocity 𝑣 (𝑦) = d

d𝑡 𝑓𝑡 (𝑦) is defined. If these velocities
are different at 𝑦0 and 𝑦1 and the closest point switches from 𝑓 (𝑦0)
to 𝑓 (𝑦1), then the derivative of𝜓 (𝑥 ; 𝑓𝑡 ) has a discontinuity. This is
shown in detail in Figure 1.
Second, the choice of 𝑟 that would ensure that no contacts are

missed requires that the curvature of the deformed surface 𝑓 is
bounded from above. Otherwise, no matter how small 𝑟 is, the
surface can fold onto itself, so that there is a contact at a point with
|𝑥 −𝑦 | < 𝑟 . Furthermore, if we would like to use a large 𝜖 , then 𝑟 has
to be equally large, excluding ever larger parts of Ω, i.e., potentially
missing contact.

One smoothed version of𝜓 𝐼𝑃𝐶 (𝑥 ; 𝑓 ) proposed in the paper uses
𝐿𝑝 norm, i.e.,

𝜓 𝐼𝑃𝐶
𝐿𝑝

(𝑥 ; 𝑓 ) =
(∫

𝑦, ∥𝑥−𝑦 ∥>𝑟
𝑝IPC𝜖 (∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥)𝑝

)1/𝑝
which is similar to our potential for 𝑝 = 1. However, the interac-
tionset here would be all points excluding a small part of Ω near 𝑥
determined by 𝑟 .
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Fig. 2. Discretized convergent IPC geometry. Left:𝑑𝑒
𝑖
= ∥ 𝑓 (𝑥 ) − 𝑓 (𝑦𝑖 (𝑥 ) ) ∥

shown in red are the distances to the edges that are within 𝜖 (𝑑 in IPC
notation) of the point 𝑓 (𝑥 ), which is assumed to be a vertex. Middle: 𝑑𝑣

𝑗
=

∥ 𝑓 (𝑥 ) − 𝑓 (𝑥 𝑗 ) ∥ are distances to vertices within the same radius. Right: the
"convex" case that motivates the convergent IPC discretization definition. In
this case, the distance from the point 𝑓 (𝑥 ) to the other interaction points
(i.e., points not on the adjacent edges) that are within the 𝜖 ball, is increasing
as one moves away from the closest point at the distance 𝑑𝑒2 . The distances
to all edges other than the closest one are the distances to one of their
vertices, which is canceled in the formula, leaving 𝑑𝑒2 only.

The "smooth" discretization proposed for the IPC potential in 2D
for a piecewise linear mesh is defined as

𝜓 𝐼𝑃𝐶,𝑑 (𝑥 ; 𝑓 ) =
∑︁

edges 𝑖
𝑝IPC𝜖 (∥ 𝑓 (𝑥) − 𝑓 (𝑦𝑖 (𝑥))∥)

−
∑︁

vertices 𝑗
𝑝IPC𝜖 (∥ 𝑓 (𝑥) − 𝑓 (𝑥 𝑗 )∥)

(1)

where the summation is over all edges not containing 𝑥 and all
vertices excluding 𝑥 if 𝑥 is a vertex, and 𝑦𝑖 (𝑥) is the closest point
to 𝑥 on the edge 𝑖 . An illustration of this discretization is given in
Figure 2.
Here, one can observe that:

• As 𝑦𝑖 (𝑥) may vary nonsmoothly with 𝑓 , the expression may
still be non-smooth w.r.t. 𝑓 .

• The implicit assumption is that 𝜖 in 𝑝IPC𝜖 is less than any
edge length, otherwise, the potential will create an artificial
repulsion between adjacent vertices.

• The proof of the discrete potential’s positivity (which is not
guaranteed by construction) uses the acceptable 𝑑 assump-
tion (𝜖 in our notation), which requires either updating 𝜖

separately at each vertex as the mesh evolves or setting the
most conservative 𝜖 globally, and also updating it as the mesh
changes.

• For either the continuum version of the potential or for the
discrete version, there is no guarantee that there is no repul-
sion in the undeformed shape.

4 VERIFICATION OF PROPERTIES
In this section, we outline the verification of the potential properties
described in the paper for both the smooth and piecewise smooth
formulations. We emphasize that this is not a complete rigorous
analysis of the potentials, which we leave as future work.

Several requirements are satisfied for both potentials by construc-
tion, so they need not be verified for smooth and piecewise smooth
formulations separately.

Requirement 3, No spurious forces. This requirement is satisfied
by our choice of 𝜖 (𝑥) directly, as the potentials are guaranteed to
vanish for 𝑓0 (the undeformed shape).

Requirement 4, Localization. This is accomplished by the con-
struction of the potential with 𝜖 (𝑥) < 𝜖trg.

Requirement 5, Differentiability. As the potential integrand is
constructed explicitly using compositions of 𝐶1, piecewise 𝐶2 func-
tions, substituting 𝑓 (𝑥) = ∑

𝑖 𝑝𝑖𝐵𝑖 (𝑥), where 𝐵𝑖 (𝑥) are basis func-
tions, and 𝑝𝑖 are control points, with respect to which we would like
to differentiateΨ, we observe that the integrand has the desired prop-
erty, and by the Leibniz integral rule, the integral is differentiable,
and piecewise twice differentiable with respect to the parameters
𝑝𝑖 .

4.1 Deformable smooth surfaces
We first consider the case where both Ω and 𝑓 (Ω) are smooth
surfaces and the potential is given by Equation (5).

Proposition 1. The potential (5) satisfies Requirements 1 to 5 if 𝑓
is a curvature-continuous surface, with 𝐶 (𝑥, 𝑓 ) given by Definition 1,
distance-to-contact defined as𝑑𝑐 (𝑥, 𝑓 ) := min𝑦∈𝐶 (𝑥,𝑓 ) ∥ 𝑓 (𝑥)− 𝑓 (𝑦)∥,
and 𝛾 (𝑥,𝑦) given by Equation (6), and 𝑝 > 𝑛 − 1, where 𝑛 is the
dimension (2 or 3).

Requirement 1, Finiteness. Each 𝜓𝜖 (𝑥,𝑦; 𝑓 ) is an integral of a
smooth function defined everywhere on Ω, hence is well defined.
It remains to show that it is integrable with respect to 𝑥 and 𝑦, i.e.,
𝜓𝜖 (𝑥,𝑦; 𝑓 ) is finite. It is sufficient to show that 𝑑𝑐 (𝑥, 𝑓 ) is uniformly
bounded from below, with respect to 𝑥 and 𝑦, i.e., there is 𝑟 > 0,
such that 𝑑𝑐 (𝑥, 𝑓 ) > 𝑟 for any 𝑥 and 𝑦. Then𝜓𝜖 (𝑥,𝑦; 𝑓 ) is uniformly
bounded from above, and Ψ is well defined.

In the smooth case, the interaction set𝐶 (𝑥, 𝑓 ) is a subset of the set
of𝑦 satisfyingΦ𝑒 (𝑥,𝑦) = −𝑛(𝑦) · (𝑓 (𝑦)− 𝑓 (𝑥))+ ≥ −𝛼 . As for a point
𝑦 approaching 𝑥 , 𝑓 (𝑦) − 𝑓 (𝑥) becomes close to a tangent, in the limit
𝑦 → 𝑥 , we have Φ𝑒 (𝑥,𝑦) = 1. Φ𝑒 (𝑥,𝑦) is a continuous function of 𝑦,
for each 𝑥 . Furthermore, due to the curvature continuity assumption,
the normal gradient ∇𝑦𝑛(𝑦) is continuous on the whole surface,
therefore, there is a uniform bound 𝐵𝑛 on the norm of the gradient
of the normal and a bound 𝐵𝑓 on the gradient of 𝑓 . Consider for all
𝑥 , a neighborhood of size 𝛿 ; then the change in Φ𝑒 for a sufficiently
small 𝛿 , can be bounded, up to a constant, by 𝛿 (𝐵𝑓 + 𝐵𝑛), i.e., for a
sufficiently small 𝛿 , one can make Φ𝑒 (𝑥,𝑦) arbitrarily close to 1 for
all points in neighborhoods of uniform size 𝛿 . In particular, these
neighborhoods do not have any points of interaction sets in them.
We conclude that𝜓𝜖 (𝑥, 𝑓 ) is bounded and Ψ is well-defined.

Requirement 2, Barrier. Consider a family of deformations 𝑓𝑡 ,
𝑡 ∈ [0, 1]. Suppose 𝑓𝑡 is contact-free for 𝑡 < 1 and in contact at 𝑡 = 1,
i.e. 𝑓1 (𝑥) = 𝑓1 (𝑦) for some 𝑥, 𝑦 ∈ Ω and 𝑥 ≠ 𝑦. We consider the
behavior of the barrier as 𝑡 approaches 1. The distance function will
have local minima around 𝑦, which is distinct from 𝑥 . We can cut
out an open disk around 𝑥 , and let 𝑟 be the minimal distance to the
disk boundary. Consider the remainder of the surface that satisfies
the exterior direction constraint. It is non-empty, as it is not empty
in the limit 𝑡 → 1, and Φ𝑚 changes continuously with 𝑓𝑡 . On this
remainder, the minimum of the distance function is smaller than
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𝑟 if 𝑡 is sufficiently close to 1, and this minimum has to be a local
minimum, as it is not attained on the surface boundary. We conclude
that the interaction set for 𝑥 cannot be empty, and as the distance to
the interaction set approaches zero, the potential becomes infinite,
and as the interaction set over which it is integrated, has a limit non-
zero measure for 𝑡 = 1, for sufficiently large 𝑝 (at least 1 for 2D and
2 in 3D), the integral defining the potential𝜓𝜖 (𝑥,𝑦; 𝑓 ) approaches
infinity as 𝑡 → 1, i.e., the barrier property is satisfied.
Consider a smooth contact problem with two surfaces at a dis-

tance ℎ, sufficiently small so that the smooth surfaces can be approx-
imated by two parallel planes, and much smaller than 𝜖𝑡𝑟𝑔 . Consider
a fixed point 𝑥 on one plane with the closest point 𝑦 on the other
plane, and a circular patch centered at the point 𝑦, of sufficiently
small radius 𝑟 so that it fits into the interaction set. Due to local
minimum constraints, 𝑟 = 𝑘ℎ, for a 𝑘 > 0 independent of ℎ. This
allows us to estimate the inner integral of the potential over the
interaction set𝐶 (𝑥, 𝑓 ) by the following integral in polar coordinates
(𝜌, 𝜃 ) centered at 𝑦:∫

𝜃

∫
𝜌

𝜌 (ℎ2 + 𝜌2)−𝑝/2 d𝜌d𝜃 (2)

This integral can be computed explicitly and behaves as ∼ ℎ2−𝑝 for
small values of ℎ if 𝑝 > 2. This suggests that the barrier property
requires 𝑝 > 2 in 3D, and similarly, 𝑝 > 1 in 2D. As the integrals for
all points in a patch of fixed size around 𝑥 have similar behavior with
respect to ℎ, the total potential for the interaction of two fixed-sized
patches as ℎ → 0 grows as ℎ2−𝑝 .

4.2 Piecewise smooth contact
We now consider the formulation for piecewise smooth surfaces.

Proposition 2. The potential (14) satisfies Requirements 1 to 5 if 𝑓 is
piecewise smooth surface as defined in the paper, with 𝐶 (𝑥, 𝑓 ) given
by Definition 2, distance-to-contact defined as

𝑑𝑐 (𝑥, 𝑓 ) := min
𝑦∈𝐶 (𝑥,𝑓 )

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥,

and 𝛾 (𝑥,𝑦) given by Equation (13).

Requirement 1, Finiteness. Each integral 𝜓𝜖 (𝑥,𝑦; 𝑓 ) is an inte-
gral of a smooth function defined everywhere on Ω, hence is well-
defined, as in the smooth case. Unlike the smooth case, however, the
distance to the interaction set may not be uniformly bounded from
below with respect to 𝑥 and 𝑦. Consider two (possibly curved) faces
meeting at an edge curve. Sufficiently close to the edge curve, and
near a fixed point on the edge, two faces can be approximated by
their tangent planes with cross-sections perpendicular to the edge
shown in Figure 3. One can see that the distance to the interaction
set can be arbitrarily close to zero. However, the contact area for
such points also becomes increasingly small, so if the point-point
potential does not grow very quickly, the integrated potential is
well-defined.

We assume that the angle 𝛾 between the normals of two faces
sharing an edge is never zero.
Then for a point at distance 𝑟 from the edge the distance to the

interaction set is 𝑑 ∼ 𝑟 sin𝛾 , and the area of the interaction set, in
3D, ∼ 𝑟2 sin𝜃 . Thus, if potential power 𝑝 < 3, then the integral of

Fig. 3. The interaction set for two points 𝑥1 and 𝑥2 on a concave corner.
The 𝑓 (𝑥 ) may be arbitrarily close to the apex, but the contact area for such
points becomes increasingly small. 𝛾 is the angle of the cusp, 𝜃 is the angle
at 𝑓 (𝑥 ) corresponding to the interaction set, 𝛼 = cos𝜃 .

the potential over the interaction set for a point at distance 𝑟 to the
edge remains bounded, as 𝑑−𝑝𝑟2 ∼ 𝑟2−𝑝 is integrable. Similarly, in
2𝐷 , the potential needs to grow no faster than 1/𝑟2.
Requirement 2, Barrier. Consider a family of deformations 𝑓𝑡 ,
𝑡 ∈ [0, 1]. Suppose 𝑓𝑡 is contact-free for 𝑡 < 1 and in contact at 𝑡 = 1,
i.e. 𝑓1 (𝑥) = 𝑓1 (𝑦) for some 𝑥, 𝑦 ∈ Ω and 𝑥 ≠ 𝑦. The fact that for a
point 𝑥 and 𝑓 sufficiently close to contact the interaction set is not
empty is established in the same way as for smooth surfaces. Below
we prove that the potential (Equation 14) tends to infinity as 𝑡 → 1.

• For Vertex-Vertex interactions, no integration is done in (14),
and the potential goes to infinity when the distance goes to
zero for any positive power 𝑝 of the potential.

• Suppose one of the primitives is a face, and the distance
between primitives is ℎ. Similarly to the smooth case, we can
use the estimate of the integral (2), for a potential growth rate
for fixed 𝑥 .
If the other element is a vertex, no further integration is
needed. If the other element is an edge, there is a one-dimensional
integral computed along the edge curve, and if we assume
that a fixed-size length ℓ along the curve is within distance
ℎ of the face, then the total potential is ∼ ℓ𝐿 ln(ℎ), i.e., it is a
barrier, for any 𝑝 ≥ 2 (𝑝 ≥ 1 in 2D).
Note that, in contrast to the smooth case, the range of po-
tentials for 3D, determined by the constraint 𝑝 < 3 for the
cusp on the one hand, and 𝑝 > 2, on the other hand, allows
for a narrow range of 𝑝 . We note, however, that the practical
effects of these limitations are relatively subtle, as they pri-
marily affect the behavior in the limit, as any potential with a
positive 𝑝 is a barrier in the discrete case, and the limitation
at the cusps also only becomes apparent under refinement.

• If one element of the contact pair is an edge, and the other is
a vertex or an edge, then the integral for a point on the other
element is similar to the integral above, with d𝜌 replacing 𝜌d𝜌 .
The constraint on 𝑝 is less stringent: any 𝑝 > 1 is sufficient.
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